Research

We study the geophysical fluid dynamics (GFD) of the ocean and atmosphere, using theory, state-of-the-art high-resolution numerical models, and observations. A particular focus of our work is the ocean submesoscale (horizontal scales of 0.1-10 kms), a range of scales which are particularly challenging for traditional observational and computational methods. Understanding the dynamics of the ocean submesoscale is currently one of the most outstanding challenges in ocean physics, with fundamental connections to large-scale ocean circulation, ocean primary productivity, and air-sea interaction.

Click the below topics for more info, or see publications.

Bottom boundary layer

Submesoscale processes in the ocean bottom boundary layer

Multi-scale dynamics

From turbulence to the submesoscale to the gyre scale

Air-sea interaction

Coupled interaction between the atmosphere and ocean

Teaching

Physical Oceanography (AOSC420/670)
Fall 2020, 2021, 2022: Course Flyer, Syllabus


Oceanography of the Chesapeake and Mid-Atlantic (AOSC421)
Spring 2022, 2023: Syllabus


Responsive image

Publications

Group members in bold.

Submitted

  1. Dong, J., B. Fox-Kemper, J.O. Wenegrat, A. Bodner, H. Zhang, X. Yu, C. Dong: Submesoscales are a significant turbulence source in global ocean surface boundary layer

Published

  1. Wenegrat, J.O.: The current feedback on stress modifies the Ekman buoyancy flux at fronts. J. Phys. Oceanogr., in press. doi:10.1175/JPO-D-23-0005.1 online pdf
  2. Chor, T., J.O. Wenegrat, and J.R. Taylor, 2022: Insights into the mixing efficiency of submesoscale Centrifugal-Symmetric instabilities. J. Phys. Oceanogr., 52, 10, 2273-2287. doi:10.1175/JPO- D-21-0259.1 online pdf
  3. Wenegrat, J.O. , E. Bonanno, U. Rack, and G. Gebbie, 2022: A century of observed temperature change in the Indian Ocean. Geophys. Res. Lett., 49, e2022GL098217, doi:10.1029/2022GL098217. online pdf
  4. Ruan, X., J.O. Wenegrat, and J. Gula, 2021: Slippery bottom boundary layers: the loss of energy from the general circulation by bottom drag. Geophys. Res. Lett. 48, 19. doi: 10.1029/2021GL094434 online pdf
  5. Elipot, S., and J.O. Wenegrat, 2021: Vertical structure of near-surface currents: Importance, state of knowledge, and measurement challenges. CLIVAR Variations, 19. doi:10.5065/ybca-0s03 online pdf
  6. Wenegrat, J.O., L.N. Thomas, M. Sundermeyer, J.R. Taylor, E.A. D'Asaro, J. Klymak, R.K. Shearman, and C.M. Lee, 2020: Enhanced mixing across the gyre boundary at the Gulf Stream front. Proceedings of the National Academy of Sciences. 117, 30, 17607-17614. doi: 10.1073/pnas.2005558117 online pdf SI
  7. Farrar, T., and Co-Authors, 2020: S-MODE: The Sub-Mesoscale Ocean Dynamics Experiment. IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 2020. 3533-3536. doi: 10.1109/IGARSS39084.2020.9323112 online pdf
  8. Wenegrat, J.O., and L.N. Thomas, 2020: Centrifugal and symmetric instability during Ekman adjustment of the bottom boundary layer. J. Phys. Oceanogr. 50, 6, 1793-1812. doi: 10.1175/JPO-D-20-0027.1 online pdf
  9. Johnson, L., C.M. Lee, E.A. D'Asaro, J.O. Wenegrat, and L.N. Thomas, 2020: Restratification at a California current upwelling front, part II: Dynamics. J. Phys. Oceanogr. 50, 5, 1473-1487. doi: 10.1175/JPO-D-19-0204.1 online pdf
  10. Wenegrat, J.O., and R.S. Arthur, 2018: Response of the atmospheric boundary layer to submesoscale sea-surface temperature fronts. Geophys. Res. Lett. 45, 24, 13505-13512. doi: 10.1029/2018GL081034 online pdf
  11. Wenegrat, J.O., J. Callies, and L.N. Thomas, 2018: Submesoscale baroclinic instability in the bottom boundary layer. J. Phys. Oceanogr. 48, 11, 2571-2592. doi: 10.1175/JPO-D-17-0264.1 online pdf
  12. Wenegrat, J.O., L.N. Thomas, J. Gula, and J.C. McWilliams, 2018: Effects of the submesoscale on the potential vorticity budget of ocean mode waters. J. Phys. Oceanogr. 48, 9, 2141-2165. doi: 10.1175/JPO-D-17-0219.1 online pdf
  13. Wenegrat, J.O., and L.N. Thomas, 2017: Ekman transport in balanced currents with curvature. J. Phys. Oceanogr. 47, 5, 1189-1203. doi: 10.1175/JPO-D-16-0239.1 online pdf
  14. Wenegrat, J.O., and M.J. McPhaden, 2016: A simple analytical model of the diurnal Ekman layer. J. Phys. Oceanogr. 46, 9, 2877-2894. doi: 10.1175/JPO-D-16-0031.1 online pdf
  15. Wenegrat, J.O., and M.J. McPhaden, 2016: Wind, waves, and fronts: Frictional effects in a generalized Ekman model. J. Phys. Oceanogr., 46, 2, 371-394. doi: 10.1175/JPO-D-15-0162.1 online pdf
  16. Wenegrat, J.O., and M.J. McPhaden, 2015: Dynamics of the surface layer diurnal cycle in the equatorial Atlantic Ocean (0°, 23°W), J. Geophys. Res. Oceans, 120, 563-581, doi: 10.1002/2014JC010504 online pdf
  17. Wenegrat, J.O., M.J. McPhaden, and R.-C. Lien, 2014: Wind stress and near-surface shear in the equatorial Atlantic Ocean. Geophys. Res. Lett., 41, 1226-1231, doi: 10.1002/2013GL059149 online pdf
SUOMI/VIIRS courtesy of NASA

People

Click the photos for more info.

Jacob Wenegrat

Assistant Professor
Atmospheric and Oceanic Science

Tomás Chor

Postdoctoral Researcher
tomchor.github.io

Zhihua Zheng

Postdoctoral Researcher
Atmospheric and Oceanic Science

Zihan Chen

Graduate Student
Atmospheric and Oceanic Science

Logan Knudsen

Graduate Student
Atmospheric and Oceanic Science

Igor Uchôa Farias

Graduate Student
Atmospheric and Oceanic Science

Rachel Wegener

Graduate Student
Atmospheric and Oceanic Science

Victoria Whitley

Graduate Student in Applied Mathematics & Statistics, and Scientific Computing

Megan Brown

Undergraduate Researcher
Atmospheric and Oceanic Science

Group Alumni

Madison Magaha - Undergraduate researcher AOSC (2023)

Jennifer Salerno - Undergraduate researcher AOSC (2023)
NOAA Lapenta Internship

Skylar Lama - Undergraduate researcher AOSC (2021-2022)
2022 recipient of the Bernice and Susan Tannenbaum Prize in Climate Science
Now: PhD Student at Georgia Tech

George Campe - Undergraduate researcher AOSC (2021-2022)
Now: Analyst at Arete

Daniel Levy - Undergraduate researcher Math & Physics (2021)
2021 UMD nominee for the Goldwater Scholarship

Emma Bonanno - Undergraduate researcher AOSC (2020-2021)
2021 recipient of the Bernice and Susan Tannenbaum Prize in Climate Science
Now: Consultant for Accenture Goverment Services

Funding opportunities are available in my group for a postdoctoral researcher interested in submesoscale dynamics, GFD, and numerical simulation. Please get in touch if you'd like to discuss more.

I am always happy to chat with UMD undergraduate researchers, PhD students, and postdocs about opportunities to join my group at the University of Maryland, College Park. It helps to have a strong background in topics like math, physics, and scientific programming, but no experience in oceanography or ocean dynamics is necessary. If you would like to learn more I recommend starting by reading some of our recent publications, and taking a look at our group 'expectations' document which will hopefully give you a sense of my advising style and what it is like to work in our group. I also welcome you to get in touch to discuss possible research topics, funding opportunities, and how to apply.

Responsive image

Contact


Jacob Wenegrat


Department of Atmospheric and Oceanic Science
University of Maryland, College Park
4254 Stadium Dr.
College Park, MD 20740


Email: wenegrat@umd.edu