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ABSTRACT

Weakly stratified layers over sloping topography can support a submesoscale baroclinic instability mode, a

bottom boundary layer counterpart to surfacemixed layer instabilities. The instability results from the release

of available potential energy, which can be generated because of the observed bottom intensification of

turbulent mixing in the deep ocean, or the Ekman adjustment of a current on a slope. Linear stability analysis

suggests that the growth rates of bottom boundary layer baroclinic instabilities can be comparable to those of

the surfacemixed layermode and are relatively insensitive to topographic slope angle, implying the instability

is robust and potentially active in many areas of the global oceans. The solutions of two separate one-

dimensional theories of the bottomboundary layer are both demonstrated to be linearly unstable to baroclinic

instability, and results from an example nonlinear simulation are shown. Implications of these findings for

understanding bottom boundary layer dynamics and processes are discussed.

1. Introduction

An important development in our understanding of

the upper ocean, occurring largely over the last decade,

has been the recognition that submesoscale (horizontal

scales of approximately 0.1–10km) fronts, eddies, and

instabilities are a prominent component of the dynamics

of the ocean surface mixed layer (Boccaletti et al. 2007;

Callies et al. 2015). These submesoscale processes alter

the classic one-dimensional picture of boundary layer

dynamics, giving rise to a host of new physical processes

that have been shown to affect both large-scale ocean

processes (Lévy et al. 2010; Wenegrat et al. 2018) and

the turbulence properties of the boundary layer itself

(Taylor and Ferrari 2010; Thomas and Taylor 2010;

Taylor 2016). However, despite the large body of lit-

erature that has developed on submesoscale processes

in the surface boundary layer [as reviewed in Thomas

et al. (2008) and McWilliams (2016)], these types of

processes have received much less attention in the bot-

tom boundary layer (BBL),1 despite BBLs over sloping

topography exhibiting key similarities with surface

mixed layers at a front, particularly the existence of

available potential energy in the form of a horizontal

buoyancy gradient (Fig. 1).

Recently, however, observations and numerical mod-

eling have begun to suggest that the BBL does indeed

support an active submesoscale turbulence field, with

dynamical implications potentially as broad as for sub-

mesoscale processes in the surface boundary layer. Sub-

mesoscale processes in BBLs along topography have

been shown to enhance cross-shelf exchanges (Gula et al.

2015), contribute to interior water mass transformation

(Ruan et al. 2017), generate long-lived submesoscale

coherent vortices (Molemaker et al. 2015), and provide
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1 Throughout this paper, we will use the term bottom boundary

layer to denote any weakly stratified lower layer, a definition that

includes both very well mixed layers adjacent to topography and

the weakly stratified overlying layer that can appear in some so-

lutions to the 1D dynamics (e.g., section 3).
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another route for cascading energy from the large-scale

flow into unbalanced motions and eventual dissipation

(Gula et al. 2016). Particular focus has been given to

centrifugal (CI) and symmetric instabilities (SI) in the

BBL, both of which are associated with negative po-

tential vorticity (Hoskins 1974; Haine and Marshall

1998), which can occur in BBLs over steep topography

(Dewar et al. 2015) or in the presence of interior flows

driving downslope Ekman transport in the boundary

layer (Allen and Newberger 1998). The role of baroclinic

instability in theBBL is currently less clear, despite the fact

that surface mixed layer baroclinic instabilities are one of

the more thoroughly studied aspects of submesoscale

dynamics, with demonstrated effects on boundary layer

restratification (Boccaletti et al. 2007; Fox-Kemper

et al. 2008), surface potential vorticity fluxes (Wenegrat

et al. 2018), boundary layer turbulence (Taylor 2016),

biological productivity (Mahadevan et al. 2012), and the

mesoscale eddy field (Sasaki et al. 2014). Understanding

the conditions under which baroclinic instability can

be expected to be active in the BBL is therefore a

key step toward understanding submesoscale turbulence

in the BBL.

In this article, we extend a variety of earlier works

on baroclinic instability over topography (e.g., Blumsack

and Gierasch 1972; Mechoso 1980; Pedlosky 2016;

Solodoch et al. 2016) to the nongeostrophic regime

appropriate for the low Richardson numbers typical of

the BBL. Using a linear stability analysis, we explore the

parameter dependence of baroclinic instabilities in a

weakly stratified lower layer over sloping topography,

which can be considered as a bottom counterpart to the

surface mixed layer instability (Boccaletti et al. 2007).

The submesoscale BBLmode is shown to be more robust

to topographic slope thanmesoscale baroclinic instability,

and we demonstrate that the solutions to two classic one-

dimensional theories of the BBL structure are unstable to

BBL baroclinic instability. An example idealized non-

linear simulation further suggests that at finite amplitude

the BBL baroclinic instability mode can generate vertical

buoyancy fluxes, and vertical velocities, similar in magni-

tude to those associated with surface mixed layer in-

stabilities. It is therefore expected that submesoscale

baroclinic instability, along with the symmetric and cen-

trifugal modes (Allen and Newberger 1998; Molemaker

et al. 2015; Dewar et al. 2015; Gula et al. 2016), plays a

leading-order role in the dynamics of both coastal (Brink

2016; Brink and Seo 2016; Hetland 2017), and deep ocean

BBLs, with implications for closing the upwelling limb of

the abyssal circulation (Ferrari et al. 2016; Callies 2018).

The article is organized as follows. In section 2 the

equations governing linear perturbations in the BBL are

developed, relevant quasigeostrophic results are briefly

reviewed, and the parameter dependence of the baro-

clinic mode in the nongeostrophic limit is explored nu-

merically. In section 3 a steady one-dimensional solution

for a BBL in the presence of bottom-intensified turbu-

lence, with parameters similar to those observed along

the mid-Atlantic ridge, is shown to support growing

baroclinic instability in a weakly stratified outer layer

on the order of hundreds of meters thick. In section 4

numerical solutions of the time-dependent, one-

dimensional, Ekman adjustment problem for flow

along a slope are likewise shown to be unstable to sub-

mesoscale baroclinic instability in a well-mixed bottom

boundary layer that is on the order of tens of meters

thick. An example nonlinear simulation is presented in

section 5, allowing us to comment briefly on the finite-

amplitude behavior, and in section 6 the baroclinicmode

is discussed in relation to symmetric and centrifugal in-

stability, both of which can also be present in BBLs over

sloping topography. Major findings and broader impli-

cations are summarized in section 7.

2. Baroclinic instability in the bottom
boundary layer

a. Theory

We consider the stability characteristics of a line-

arized Boussinesq system, in a coordinate system

FIG. 1. (a) Schematic of a BBLover a linear topographic slope, with

solid contours indicating buoyancy surfaces and the dashed line

indicating the top of a weakly stratified BBL. The rotated co-

ordinate system is indicated in the lower left. (b) Simplified do-

main used in the basic parameter space exploration (section 2c).

Throughout, the background velocity is assumed to be a function

only of the slope-normal coordinate z. The relationships between

the slope-normal derivative and derivatives in the nonrotated

frame are also indicated.
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rotated to align with a linear slope in the x̂ direction

(Fig. 1), where throughout the paper we will indi-

cate quantities in the conventional, nonrotated, co-

ordinate system using a caret notation, background

fields using uppercase variables, and perturbation

quantities using lowercase variables. The slope-normal

coordinate is defined positive upward. An arbitrary back-

ground flow can be expressed in the rotated frame

as (U, V, W)5 (Û cosu1 Ŵ sinu, V̂, Ŵ cosu2 Û sinu),

where u is the angle of the topographic slope (Fig. 1).

The equations governing the linear evolution of the

perturbations are then

u
t
1 u � =U1U � =u2 f y cosu52p

x
1 b sinu1= � (n=u) , (1)

y
t
1 u � =V1U � =y1 fu cosu2 fw sinu52p

y
1= � (n=y) , (2)

w
t
1 u � =W1U � =w1 f y sinu52p

z
1 b cosu1= � (n=w) , (3)

= � u5 0 , and (4)

b
t
1u � =B1U � =b5= � (k=b) , (5)

where f is the Coriolis parameter, n is the viscosity, k is

the diffusivity, =x 5 (xx, xy, xz) is the gradient operator

in the rotated frame, and subscripts denote differentia-

tion. Note that, consistent with Stone (1971), we retain

nonhydrostatic effects but make the traditional approxi-

mation for theCoriolis force, ignoring terms involving the

horizontal components of the Coriolis parameter. This is

an accurate approximation for the problems considered

here, and further allows the problem to remain invariant

under rotation of the slope direction. Boundary condi-

tions depend on the particular problem configuration and

will be discussed in the relevant following sections.

For simplicity, we will only consider background flows

that are invariant in the rotated along- and across-slope

direction, which excludes slope-normal background flows

(i.e., W 5 0). These restrictions are consistent with the

conceptual model of a BBL of uniform thickness along

a linear slope (sections 3 and 4) and still allow for a

vertically and horizontally sheared background flow in

the nonrotated coordinate system (where the horizontal

shear is a consequence of the sloping topography, as

shown schematically in Fig. 1b). We will also retain only

the slope-normal component of the turbulent diffusion

terms, which for an isotropic turbulent diffusivity can be

understood as an assumption of small aspect ratio, H2/L2

� 1, where H and L scale the slope-normal and rotated

horizontal dimensions, respectively. This choice does not

affect the conclusions of this article; however, we empha-

size that the properties of diapycnal and isopycnal turbu-

lent mixing in the BBL are currently poorly constrained

from available observations, and it is possible that under

some circumstances—for example, along very steep

topography—the full three-dimensional diffusion opera-

tor may be important.

Assuming perturbations of the form f5 �f(z)ei(kx1ly2vt)

gives the eigenvalue problem,

i(kU1 lV2v)ù1 �wU
z
2 f�y cosu52ik�p1 �b sinu1 (n�u

z
)
z
, (6)

i(kU1 lV2v)�y1 �wV
z
1 fù cosu2 f �w sinu52il�p1 (n�y

z
)
z
, (7)

i(kU1 lV2v) �w1 f�y sinu52�p
z
1 �b cosu1 (n �w

z
)
z
, (8)

ikù1 il�y1 �w
z
5 0 , and (9)

i(kU1 lV2v) �b1 �uB
x
1 �wB

z
5 (k �b

z
)
z
. (10)

Given a specified background state, the eigenvalues of

(6)–(10) can be found numerically. We do this by

projecting the governing equations onto a Chebyshev

basis in z (n 5 256 in all cases) and then finding

the eigenvalues of the resulting matrix using the

Dedalus equation-solving framework (Burns et al.

2016).

Later in the article, general profiles of background ve-

locity and buoyancy will be considered using (6)–(10) di-

rectly; however, to better illustrate the problem parameter
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dependence, it is useful to assume a background flow in

the along-slope direction, with uniform vertical shear,

Vẑ 5L, and stratification,Bẑ 5N2, such thatV5Lz secu,
and B5N2(z cosu1 x sinu). Equations (6)–(10) can

then be nondimensionalized following Stone (1971) using

(x, y)5LH/f (x0, y0), z5Hz0, (u, y, V)5LH(u0, y0, V 0),
b5N2Hb0, p5N2H2p0, (n, k)5Ay(n

0, k0), w5 fHw0,
and t5 f21t0, with primes denoting nondimensional quan-

tities. Dropping grave and prime accents for clarity

then gives

i(lz secu2v)u2 y cosu52iRikp1ab cosu1E(nu
z
)
z
, (11)

i(lz secu2v)y1w secu1 u cosu2 dw sinu52iRilp1E(ny
z
)
z
, (12)

id2(lz secu2v)w1 dy sinu52Rip
z
1Rib cosu1 d2E(nw

z
)
z
, (13)

iku1 ily1w
z
5 0 , and (14)

i(lz secu2v)b1Ri21u(11a) cosu1w(cosu2 dRi21 sinu)5E(kb
z
)
z
. (15)

The relevant nondimensional parameters are the

Richardson number of the background flow, Ri5N2/L2;

a nonhydrostatic parameter, d5 f/L; the Ekman number,

E 5 Ay/(fH
2); and a slope parameter,

a5
N2

fL
tanu , (16)

which gives the ratio of the topographic slope to minus

the isopycnal slope.2 Alternately, the slope parameter

can be expressed as a 5 (SRi)1/2, where S 5 (N tanu/f)2

is the slope Burger number. For the analyses of this

paper, we retain nonhydrostatic terms (except for the

nonlinear simulation of section 5); however, the non-

hydrostatic parameter is generally small, even for

weakly stratified layers, and hence the inviscid stability

characteristics of this system of equations are primarily

determined by the Richardson number and a.

To motivate the following sections, we first consider

the baroclinic growth rates for an idealized profile of

stratification (N2) and shear (L), with varying slope

angle. Figure 2 shows profiles of background velocity

and buoyancy, where we assume there is an inviscid

along-slope flow,V(z)5Lz secu, and a stratified interior
overlying a weakly stratified BBL. Note that these pro-

files are held fixed in the nonrotated frame, hence

the isopycnal slope in the rotated frame changes as a

function of the slope angle. The inviscid problem only

requires boundary conditions on the slope-normal

velocity, which are given by w 5 0 at z 5 0 and

w 5 2u tanu at z 5 1000m, representing a rigid hori-

zontal upper boundary 1000m from the bottom. Growth

rates of the baroclinic mode (k 5 0) are calculated nu-

merically and are shown as a function of increasing slope

angle in Fig. 3. The full-depth baroclinic mode can be

seen at wavelengths of ;30 km. This mode is strongly

modulated by slope angle, with maximum growth rates

reduced, and shifted to higher wavenumber, as the slope

angle increases, consistent with the expectation from

quasigeostrophic (QG) theory (discussed further be-

low). The fastest-growing instability, however, is found

atwavelengths near 1500m,with perturbation structure and

energetics shown in Fig. 4. This is a bottom-enhanced

submesoscale baroclinic instability, resulting from the

interaction of counterpropagating Rossby waves along the

lower-boundary and on the interface of changing stratifi-

cation between the boundary layer and the interior. These

ocean bottom modes are thus similar to baroclinic in-

stabilities in the atmospheric boundary layer (Nakamura

1988) and mirror the structure of surface mixed layer in-

stabilities (Boccaletti et al. 2007; Callies et al. 2016). As

shown inFig. 3, the growth rates of the submesoscalemode

are relatively insensitive to increasing slope angle, suggesting

that submesoscale baroclinic instability may be a robust

feature of the bottom boundary layer. To understand this

behavior, wewill first briefly review relevant results from the

QG limit and then explore parameter space in the non-QG

limit relevant for submesoscale instabilities.

b. Quasigeostrophic baroclinic instability over
sloping topography

An analytical solution for the growth rate of inviscid

baroclinic instabilities over sloping topography in theQG

limit (assuming small Rossby number, large Richardson

2Note that we choose to follow the notation of Stone (1966),

and hence we denote the slope parameter using a and the non-

hydrostatic parameter using d (cf. Hetland 2017). As in Hetland

(2017) our definition of the slope parameter is of the opposite sign

to that used in Blumsack and Gierasch (1972) and other preceding

work, such that a . 0 implies isopycnal and topographic slopes of

opposite sign (see, e.g., Fig. 5).
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number, and small slope angle) was first provided by

Blumsack and Gierasch (1972), considering instabilities

in theMartian atmosphere. This work was later extended

by Mechoso (1980) to include a sloping upper boundary,

introducing an additional parameter,

aub 5
N2

fL
tanuub , (17)

the ratio of the upper boundary slope uub, to the neg-

ative of the isopycnal slope. The case where aub5a can

therefore be considered as a simple prototype model of

baroclinic instability in a bottom boundary layer that is

of uniform thickness in the across-slope direction,

ignoring deformation of the upper boundary of the

BBL (Fig. 1b). The use of a rigid lid approximation

is accurate as long as the stratification contrast be-

tween the lower-layer and interior is large (Eady 1949;

Boccaletti et al. 2007; Callies et al. 2016), in which

case including a deformable upper boundary adds

an additional free parameter and leads only to small

quantitative modifications. Later in the paper, the

assumption of a rigid boundary on the lower-layer will

be removed. For the case of uniform stratification and

vertical shear, the instability growth rate is given by

(Mechoso 1980)

v
i
5

1

Ri1/2

"
l*2(11aub) tanhl*

tanhl*
(11a)

2
1

4

�
aub 2a

tanhl*
2 l*

�2
#1/2

, (18)

where vi is the growth rate normalized by f21, and

we have introduced an alternate normalization of the

wavenumber l* using the deformation radius NH/f in-

stead ofLH/f (such that l*5Ri1/2l), as is appropriate for

quasigeostrophic dynamics. This alternate normaliza-

tion will prove useful for comparing the stability prop-

erties with varying Ri (below).

These growth rates are shown as a function of a in

Fig. 5 for the case of a horizontal upper boundary (left)

and for a sloping upper boundary, aub 5 a (right). In

both cases there is a region of instability for any a.21,

with increasing positive values of a associated with

FIG. 2. Example idealized vertical structure of a stratified interior

overlying a weakly stratified BBL.

FIG. 3. Growth rates, normalized by f 21, for the idealized profile shown in Fig. 2 for various

slope angles (legend). The low-wavenumber, full-depth baroclinic modes are indicated by the

dashed box. Growth rates of the low-wavenumber instability are highly modulated by the

slope angle, whereas the high wavenumber features are robust to changing slope angle.
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reduced growth rates, and an increasingly narrow region

of instability at high wavenumbers, as seen for the low-

wavenumber modes in Fig. 3. While linear theory pre-

dicts finite growth rates at arbitrarily high a, in reality

nonlinear (Pedlosky 2016), viscous, and non-QG (sec-

tion 2c) effects may provide an upper bound on physi-

cally relevant wavenumbers. With an upper boundary

parallel to the topography, there is no longer a baro-

tropic potential vorticity (PV) gradient, and hence there

is no longer a long-wave cutoff for a , 0 (Fig. 5, right).

The sloping boundaries also lead to a destabilization of

low wavenumbers for a , 0, with maximal growth rates

for a520.5. This is a consequence of parcel trajectories

being forced by the boundary slope to cross isopycnals

in a manner that achieves maximal extraction of avail-

able potential energy (Mechoso 1980). The increase of

growth rates as l*/ 0 can be understood as a resonance

between baroclinic and barotropic Rossby waves (Ripa

1999, 2001), associated with a uniform downslope flow

extracting available potential energy. These results will

now be compared to the non-QG limit.

c. Nongeostrophic baroclinic instabilities over
sloping topography

To explore parameter space in the non-QG limit, using

(11)–(15) in the rotated frame, we continue to assume the

flow is inviscid, with uniform background vertical strati-

fication, N2, and along-slope flow with uniform slope-

normal shear. This allows the background velocity field to

be written in the rotated frame as V(z)5 Lz secu, and in

the nonrotated frame as V(x̂, ẑ)5L(ẑ2 x̂ tanu), which

has both vertical and horizontal vorticity (section 6). We

also assume a rigid upper boundary, aligned parallel to

the topography (i.e., aub 5 a, such that the boundary

conditions are w 5 0 at z 5 0, H), a configuration that

approximates a boundary layer of uniform thickness

across the slope (Fig. 1, lower panel). The focus here is on

the baroclinic mode, and hence we assume perturbation

FIG. 4. Structure of the fastest-growing perturbation (l ’ 6 3 1024m21) for u 5 5 3 1023. Velocities are normalized relative to the

maximum across-slope velocity and buoyancy relative to the maximum buoyancy perturbation. Kinetic energy tendency terms are defined

in appendix A, with buoyancy production given by VBP and shear production by the sum of the lateral and vertical shear production terms

(LSP 1 VSP).
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variables are uniform in the across-slope direction

(k 5 0); other instability modes (k 6¼ 0) are discussed

in section 6. This simplified model can thus be thought

of as Stone’s (1966) nongeostrophic baroclinic in-

stability problem adapted for a slope. In the inviscid

and hydrostatic limit, the stability characteristics of

(11)–(15) are determined by Ri and a, which are

varied below.

In the nondimensionalization used here, l acts as a

Rossby number, quantifying advection, vis-à-vis Dopp-

ler shifting of the perturbations by the mean flow, rela-

tive to the Coriolis term. Non-QG effects will therefore

become important when l* 1, which indicates that

the flow is evolving quickly relative to the inertial time

scale, violating the QG assumption of slow dynamics.

This can be seen in Fig. 6 for Ri5 10 and Ri5 1. In each

case the low wavenumber growth rates are similar to the

expectation from QG theory, whereas wavenumbers

with l* 1 (or in the plots l**Ri1/2) have growth rates

reduced by non-QG effects. These effects are most rel-

evant for positive slope angles, a . 0, where growth

rates in the high-wavenumber tail are strongly reduced.

Considering the instability energetics, topographic re-

duction in growth rates for a . 0 can result from a re-

duction of the vertical buoyancy production by the

across-slope advection of buoyancy perturbations (ap-

pendix A). This reduction of the vertical buoyancy

production scales as a/Ri and is therefore negligible in

the QG limit, but can become significant for small Ri.

An alternate, physically intuitive, way to consider

the parameter dependence of the instabilities is to hold

the slope angle and horizontal buoyancy gradient fixed

(Fig. 7). Varying the stratification thus varies the

Richardson number and a, approximating interior strat-

ification encountering deep topography, and adjusting

within a turbulent boundary layer (sections 3 and 4). At

low Richardson numbers the growth rates increase, and

higher wavenumbers become unstable, consistent with

the decreasing stratification allowing greater vertical

penetration and coupling of the boundary waves. As-

suming values typical of interior flows (V ; 0.1ms21,

f 5 1024 s21) the most unstable modes for Ri , 10 have

a horizontal scale of O(5)km and growth rates on the

order of 0.5–3 inertial periods.

It is important to note that for isopycnals that intersect

the topography at right angles, a reasonable first ap-

proximation to the BBL structure, the slope parameter

is given by a5 tan2u, which for small slope angle can be

approximated as a ’ u2. It is estimated that approxi-

mately 95% of the world’s ocean has u& 0:1 (Costello

et al. 2010), implying small a values will be most phys-

ically relevant in the BBL. Further, for a BBL with

Ri5 1, as is anticipated for a bottom boundary layer that

has adjusted after turbulent mixing (Haine andMarshall

1998; Fox-Kemper et al. 2008; Taylor and Ferrari 2009),

a5 S1/2. Observations of weakly stratified BBLs in both

coastal and deep oceans suggest that S � 1 (Armi and

Millard 1976; Stahr and Sanford 1999; Moum et al.

2004), and hence a � 1 may be common in the BBL.

Finally, the change in the slope parameter with in-

creasing slope angle is given by ›a/›u 5 NRi1/2 sec2u/f,

which is small for BBLs with low stratification and low

FIG. 5. Baroclinic instability growth rates from (18) as a function of slope parameter a and wavenumber

normalized by the deformation radius NH/f (l*5Ri1/2l). Growth rates are normalized by f21, and it is assumed

that Ri 5 100. Shown are (left) a horizontal upper boundary and (right) an upper boundary that matches the

topographic slope, as shown schematically for a . 0, and a , 0 in each plot.
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Richardson numbers. This suggests that the properties

of the BBL instability are less sensitive to changes in

slope than the full-depth instability, for which stratifi-

cation and Richardson number are larger. This is con-

sistent with the robustness of the submesoscale mode

shown in Fig. 3. Thus, despite the reduction of growth

rates at large a evident in Fig. 6, the growth rates of

baroclinic instability can remain significant in weakly

stratified layers over topography, where both Ri and

a are small (sections 3 and 4), and the submesoscale

mode is anticipated to be a robust feature of the ocean

bottom boundary layer.

Up until this point we have considered inviscid flows

with greatly simplified vertical structures for the back-

ground buoyancy and shear fields, as an aid to inter-

preting the problem parameter dependencies. In the

following sections, we will consider the stability charac-

teristics of the bottom boundary layer structure predicted

by two somewhatmore realistic dynamical theories of the

ocean bottom boundary layer. The first results from

bottom intensified turbulent mixing, the second from

Ekman adjustment of the bottom boundary layer to an

imposed interior flow.

3. Bottom-intensified turbulent mixing

Available potential energy near the bottom boundary

can be generated by turbulent mixing associated with

processes such as the breaking of internal waves over

sloping topography. Observations show that turbulence

over rough topography is strongly bottom enhanced,

suggesting there should be a dipole of vertical velocities

along topography, with downwelling in an outer layer a

few hundred meters thick, where diapycnal buoyancy

fluxes are divergent, and upwelling in an inner layer ad-

jacent to the bottom, where diapycnal buoyancy fluxes

are convergent (e.g., Polzin 1997; Ledwell et al. 2000;

St. Laurent et al. 2001; Ferrari et al. 2016; McDougall and

Ferrari 2017). However, 1D boundary layer solutions,

with turbulent viscosities based on observations, imply

outer-layer stratification much weaker than observed,

and hence weak vertical velocity dipoles (Callies 2018).

Baroclinic instabilities in the mixing layer would alter the

1D buoyancy budget, with important implications for

closing the upwelling branch of the abyssal circulation,

and hence here we consider the stability characteristics of

1D boundary layer solutions with turbulent diffusivities

based on observations.

To do this we solve the governing equations for the

steady background state over sloping topography, with

uniform interior stratification, and no across-slope var-

iations of the boundary layer quantities,

2fV cosu5 ~B sinu1 (nU
z
)
z
, (19)

fU cosu5 (nV
z
)
z
, and (20)

UN
2
sinu5 k(N

2
cosu1 ~B

z
)

h i
z
, (21)

where N
2
denotes a specified interior stratification far

from the boundary, and the total background buoyancy

field is given by B(x, z)5 ~B(z)1N
2
cosuz1N

2
sinux,

such that ~B represents the portion of the buoyancy

not associated with the imposed interior stratification.

Boundary conditions are

FIG. 6. Growth rates for Ri5 (left) 10 and (right) 1, as a function of slope parametera andwavenumber normalized

by the deformation radius NH/f (l*5Ri1/2l). Growth rates are normalized by f21, and L 5 5f.
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U5 0 , V5 0 , N
2
cosu1 ~B

z
5 0 , at z5 0 , and

(22)

U
z
/ 0 , V

z
/ 0 , ~B

z
/ 0 , as z/‘ . (23)

Practically, the upper-boundary conditions are applied at a

finite height, sufficiently far from the lower boundary to not

influence the dynamics, which herewe set to be z5 2500m.

These equations are solvednumerically, usingDedalus,with

an idealized, bottom-enhanced profile of turbulent mixing,

n5k5 k
o
1 k

1
e2z/d . (24)

Parameters are chosen to approximate observations

taken during the Brazil Basin Tracer Release Experi-

ment (Ledwell et al. 2000):

f 525:53 1025 s21 , N5 1023 s22 , u5 23 1023 ,

(25)

k
o
5 1025 m2 s21 , k

1
5 1023 m2 s21 , and d5 200m.

(26)

These solutions are used to define the background fields

in the eigenvalue problem, (6)–(10), with perturbation

boundary conditions given by

u5 0 , y5 0 , w5 0 , b
z
5 0 , at z5 0 , and

(27)

u
z
5 0 , y

z
5 0 , w52u tanu , b

z
5 0 , at

z5 2500m. (28)

The free-slip upper-boundary conditions on momentum

are necessary to satisfy a no-stress boundary condition at

the surface (Thomas and Rhines 2002; Wenegrat and

McPhaden 2016).

The solution for the background fields is shown

in Fig. 8. There is an inner layer of thickness hi 5
[4k(0)2(N

2
u2 1 f 2)21]1/4, where isopycnals are approxi-

mately normal to the slope (Callies 2018). This layer is

approximately 6m thick for these parameters. Above

this is an outer layer, with thickness ho ; d logk1/ko,

approximately 1000m for these parameters. Stratifica-

tion in the outer layer is reduced by a factor of

[ko/k(z)1 S]/(11 S) from the interior values, where

S5 (N tanu/f )2 is the interior slope Burger number

(Garrett 1991). The across-slope momentum balance

in the outer layer is approximately 2fV cosu’ ~B sinu,

which, when combined with the force balance,

fV sinu52pz 1 ~B cosu, gives fV’ 2pz sinu, that is, the

along-slope flow is in geostrophic balance due to the

projection of the slope-normal gradient on the true

horizontal. The lower portion of the outer layer has Ri;
O(10–100) and hence is stable to symmetric instability,

but, as shown in Fig. 9, it can support growing baro-

clinic instability. The fastest-growing instability for

these parameters has a wavelength of ;5 km and an

e-folding time scale of ;5 days. For comparison, as-

suming an inviscid layer with a rigid lid at H 5 500m,

LH520.015ms21, and Ri5 25, the simplified analysis

of section 2c would predict a fastest-growing wavelength

of ;6 km and a growth rate of ;3 days.

The perturbation structure and kinetic energy ten-

dency of the fastest-growing mode are shown in Fig. 10.

Phase lines are inclined into the mean shear (note f, 0),

and the instabilities grow by releasing available poten-

tial energy in the outer layer, with maximum vertical

buoyancy fluxes near z 5 250m. Perturbations quanti-

ties are enhanced near the bottom boundary, except for

in the thin inner layer where dissipation dominates the

energetics. At finite amplitude the eddy vertical buoy-

ancy fluxes will provide a restratifying tendency, altering

FIG. 7. Growth rates for a fixed topographic slope angle (u 5 5 3 1023) and vertical shear

L 5 1023 s21, with varying N2. Wavenumbers are normalized by LH/f, growth rates by f21.
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the simple 1D balance given by (19)–(21), and poten-

tially modifying the structure of the vertical velocity

dipole in the boundary layer. The net secondary circu-

lation along sloping topography may therefore involve

both eddy and Eulerian components, with implications

for the dynamics of the abyssal circulation (Callies

2018).

4. Stability of the bottom Ekman layer

The classic analysis of the laminar bottom boundary

layer holds that, in the presence of an interior flow along

the slope, a bottom Ekman layer must also develop to

satisfy the bottom boundary condition on the momentum

(Pedlosky 1979). Interior flow thus gives rise to across-

slope flow in theEkman layer that advects the across-slope

buoyancy gradient, modifying the depth and stratification

of the boundary layer (MacCready and Rhines 1991,

1993). For interior flow in the direction of topographic

wave propagation (topography sloping upward to the right

of the direction of flow in the Northern Hemisphere) the

resulting Ekman flow is downslope, advecting light water

under dense, causing convective mixing and deepening of

the BBL (Garrett et al. 1993;Moum et al. 2004), an analog

to the surface ‘‘Ekman buoyancy flux’’ associated with

downfront winds at a surface mixed layer front (Thomas

2005). For interior flow in the opposite direction, the

Ekman flow is upslope, increasing boundary layer stability

by advecting dense water under light. In each case this

adjustment process generates available potential energy

in the BBL (Umlauf et al. 2015), and we demonstrate here

that this available potential energy can allow for growing

baroclinic instability in the BBL.

Following MacCready and Rhines (1993), we con-

sider the time-dependent adjustment of a BBL over a

linear slope. The initial condition is a barotropic, geo-

strophically balanced interior flow V and uniform stable

vertical stratification N
2
. The dimensional along-slope

velocity can then be written as V5 ~V(z, t)1V, with

governing equations,

U
t
2 f ~V cosu5 ~B sinu1 (nU

z
)
z
, (29)

~V
t
1 fU cosu5 (n ~V

z
)
z
, and (30)

~B
t
1UN

2
sinu5 k(N

2
cosu1 ~B

z
)

h i
z
, (31)

where ~B is defined in section 3 following (21). Boundary

conditions on the background flow are given by (22) and

(23), and on the perturbations by (27) and (28), with the

upper boundary applied at z 5 150m, which is suffi-

ciently far from the lower boundary to not modify the

characteristics of the BBL solution. Solutions to (29)–

(31) are found using the General Ocean Turbulence

Model (GOTM; Umlauf et al. 2005), modified to solve

the rotated equations of motion. The barotropic interior

flowV is applied as an initial condition and ismaintained

during integration by imposing a steady barotropic

pressure gradient force in the across-slope momen-

tum equation. Turbulence closure is provided using a

second-moment k–« scheme, with a prognostic equation

for the turbulence kinetic energy, and background

FIG. 8. Solution to (19)–(21) with parameters as given in (25) and

(26). In the upper-left panel the along-slope velocity V is shown in

orange and the across-slope velocity U is shown in blue.

FIG. 9. Growth rate of the baroclinic mode for the base state shown

in Fig. 8.
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viscosity and diffusivity of n 5 k 5 1025m2 s21. The

bottom boundary conditions on momentum are im-

plemented using a log-layer formulation. Detailed dis-

cussion of the use of this turbulence parameterization

in a BBL over topography can be found in Umlauf and

Burchard (2011).

a. Downwelling favorable interior flow

The numerical solution for the case of downwelling-

favorable interior flow with magnitude typical of a

deep western boundary current (Toole et al. 2011),

V 5 0.1m s21, is shown in Fig. 11. A well-mixed turbu-

lent bottom boundary layer is rapidly established by

convective mixing due to the across-slope buoyancy

advection. This leads to a growing BBL, which reaches

;30m thickness after only approximately five inertial

periods. As the BBL thickness increases, the along-slope

flow approaches thermal wind balance, and U(z)/ 0, a

state known as the ‘‘arrested’’ Ekman layer. An estimate

of the Ekman shutdown time scale can be formed as

tEk ’2Mx(Mx
t )

21 (MacCready and Rhines 1993),

where Mx is the across-slope transport, which for this

simulation gives tEk ; 10 inertial periods.

Instability growth rates (Fig. 12) are calculated using

snapshots of the numerical solutions for U, V, B, k, and

n as the background fields in the eigenvalue problem,

(6)–(10). The baroclinic mode emerges after approxi-

mately five inertial periods, with growth rates increasing

and wavenumbers decreasing as the boundary layer

deepens in time. Growth of the baroclinic mode be-

comes faster than the Ekman adjustment time scale af-

ter only t ’ 0.5tEk, emphasizing that these instabilities

grow rapidly relative to the shutdown process. High-

frequency variability is associated with weak inertial

oscillations modifying the boundary layer structure. The

structure of the fastest-growing mode at t 5 10 inertial

periods is shown in Fig. 13. Vertical buoyancy pro-

duction of kinetic energy dominates the instability

FIG. 10. Structure of the fastest-growing baroclinic mode for the base state shown in Fig. 8, discussed in section 3. Velocities are

normalized relative to the maximum across-slope velocity and buoyancy relative to the maximum buoyancy perturbation. Kinetic energy

tendency terms are defined in appendixA, with buoyancy production given byVBP, shear production by the sumof the lateral and vertical

shear production terms (LSP 1 VSP), and dissipation by DKE.
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growth, with dissipation reducing the kinetic energy

tendency by a factor of approximately 1/2. Shear pro-

duction is a small contribution to the vertically in-

tegrated kinetic energy tendency and is dominated by

the lateral shear production, although there are locally

significant contributions from both vertical and lateral

shear production terms at the top of the boundary layer.

It is important to emphasize that, for downwelling-

favorable interior flow, the BBL can become unstable to

symmetric or centrifugal instability, with growth rates

that exceed the baroclinic mode (Allen and Newberger

1998). Future work will therefore consider the full

nonlinear Ekman adjustment process; however, the

findings presented here suggest that fast-growing sub-

mesoscale baroclinic instability likely plays an impor-

tant role in the 3D adjustment of the BBL to interior

flows, emerging after symmetric/centrifugal instability

restratifies the boundary layer to a state of marginal

stability (discussed further in section 6).

b. Upwelling favorable interior flow

When the interior flow is in the opposite direction,

V 520.1m s21, the Ekman flow is upslope, which tends

to restratify the BBL (Fig. 14). Initially in the simula-

tion, shear production of turbulent kinetic energy leads

to the development of a thin turbulent BBL, with a

maximum depth of about 15m after three inertial pe-

riods. A weak, low-wavenumber baroclinic mode is

evident in the stability analysis (Fig. 15), with a peak

growth rate of approximately 0.03f at t 5 7.5 inertial

periods. The growth rate, however, decreases in time as

the upslope Ekman flow restratifies the thin BBL. Thus,

aside from a slight initial transient destabilization of the

BBL, upwelling-favorable interior flow leads to a BBL

that is stable to the baroclinic mode. The transient be-

havior in this simple numerical integration does, how-

ever, suggest that more complex, time-dependent

interior flows may lead to baroclinically unstable BBLs,

even in the case of time-mean flows that are upwelling

favorable (Brink 2016; Brink and Seo 2016).

5. Nonlinear simulation

In this section we present the results of an example of

idealized nonlinear simulation. Solutions are found us-

ing Dedalus, in a computational domain that is doubly

FIG. 11. BBL response to a downwelling-favorable interior flow, V 5 0.1m s21, with f 5
1024 s21, N 5 3.5 3 1023 s22, and u 5 1022, as in MacCready and Rhines (1993). Viscosity

n follows k closely and hence is not shown here.
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periodic in the rotated horizontal coordinate system.

This is achieved by imposing a fixed across-slope buoy-

ancy gradient, Bx 5N2
I sinu (where N2

I is an assigned

interior stratification), and solving for horizontally pe-

riodic departures from the background fields, similar to

the ‘‘frontal zone’’ configuration often used in studies of

the surface boundary layer (e.g., Taylor and Ferrari

2010). Full details of the model configuration are given

in appendix B.

The model is initialized with a uniformly stratified in-

terior (NI 5 3.43 1023 s21) and a barotropic along-slope

interior flow of 0.1ms21. The BBL is initialized in ther-

mal wind balance, with a thickness of 100m, such that

Ri5 1.5 in the BBL (Fig. 16). The slope angle is u5 1022,

giving a slope parameter in the BBL of a ’ 0.15. For

simplicity we consider the case of weak slope-normal

viscosity and diffusivity, n 5 k 5 1025m2 s21, and, for

numerical stability, a biharmonic diffusivity in the rotated

horizontal (nh 5 2 3 105m4 s21) (appendix B). A more

complete exploration of parameter space using nonlinear

simulations, including the use of physically realistic tur-

bulence closures, will be the subject of future work.

Snapshots of the instability evolution are shown in

Fig. 17. By day 10 the baroclinic mode has reached finite

amplitude and is clearly evident in both the buoy-

ancy and slope-normal velocity fields. The along-slope

wavelength of the dominant instability, l ’ 6.4 km, is

similar to that predicted by linear stability analysis of the

domain-averaged buoyancy and velocity fields at day

1.5, l’ 5.5 km. Importantly, the slope-normal velocities

exceed 250m day21 (Fig. 17, bottom row), comparable

to values associated with baroclinic instability in the

surface boundary layer. These large-magnitude vertical

velocities suggest that eddy fluxes in the BBL have the

potential to affect a wide range of BBL processes, in-

cluding, for example, nutrient fluxes between the BBL

and interior, sediment transport, and coastal hypoxia.

The energetics of the nonlinear simulation are shown

in Fig. 18. In the top panel the domain-integrated

eddy kinetic energy (EKE) is shown, defined as

EKE(t)5
Ð
V
0:5(u02 1 y02) dV, where primes indicate

departure from the rotated horizontal average. An es-

timate of EKE can be calculated from linear theory as

EKElinear(t)5 0:5
Ð
[jbu0(l)j2 1 jby0(l)j2]e2v(l)(t2to)dl, where

to5 1.5 days, the hat notation indicates the wavenumber

spectrum (calculated from the model output at t 5 to),

and vi is determined by linear stability analysis of the

domain-averaged profiles at t 5 to. This estimate thus

accounts for the distribution of energy across multiple

wavenumbers with varying growth rates, and agrees

closely with the growth rate of EKE in the nonlinear

simulation over the first 10 days. During this time the

instability growth is dominated by the buoyancy pro-

duction of EKE, as indicated in Fig. 18 (bottom), typical

of baroclinic instability. Later, after day 10, the avail-

able potential energy of the initial condition has been

depleted, EKE is saturated, and buoyancy and shear

production of EKE are largely compensated by dissi-

pation (Fig. 18, bottom).

In this simulation, domain-averaged vertical buoy-

ancy fluxes in the BBL reach hw0b0i ; O(1028) m2 s23.

This value is comparable to baroclinic instability in the

surface boundary layer (Boccaletti et al. 2007), and im-

portantly, is several orders of magnitude larger than

values typically associated with the global breaking of

internal waves over rough topography, where it is often

assumed hw0b0iIW ; O(10210)m2 s23 (Nikurashin and

Ferrari 2013; Ferrari et al. 2016). This simulation thus

suggests that finite-amplitude baroclinic instability in

the BBL has the potential to both modify the dynamics

of the BBL, and to affect the interior dynamics of both

coastal and deep oceans, through large, restratifying,

eddy vertical buoyancy fluxes.

6. Instability regimes

In addition to the baroclinic mode, (6)–(10) also admit

symmetric and centrifugal instabilities (Haine and

Marshall 1998), each of whichmay be active in the ocean

BBL under certain conditions (Allen and Newberger

1998; Brink 2012; Molemaker et al. 2015; Gula et al.

2016). While the focus of this work is primarily on baro-

clinic instability, it is useful to also briefly summarize

where in parameter space each of these modes is antici-

pated to be dominant.

FIG. 12. Hovmöller plot of the baroclinic growth rates as a func-

tion of wavenumber and time, normalized by the inertial period, for

the case of downwelling favorable interior flow (Fig. 11). Growth

rates are normalized by f21.
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An illustrative example can be formed by assuming a

geostrophically balanced along-slope flow in the direction

of topographic wave propagation, with uniform stable

stratification, and uniform slope-normal shear, such that

Vx̂ 52L tanu (Fig. 1b). Note that the assumed linear

background shear profile excludes the Kelvin–Helmholtz

mode, otherwise expected at Ri , 0.25 (Vanneste 1993).

The fastest-growing instability type will therefore depend

on the sign of f times theErtel PVof the background state

(Haine and Marshall 1998), fq5 f (f k̂1=3U) � =B,
which for this simplified configuration can be written

nondimensionally as

q0 5 12

�
a

Ri
1

1

Ri

�
. (32)

For q0 , 0, the fastest-growing instabilities will be as-

sociated with overturning circulations in the slope-

normal and across-slope plane, l 5 0, which grow by

extracting kinetic energy from the background flow

(Hoskins 1974). These instabilities can be of the sym-

metric, centrifugal, or mixed types, with the ratio of the

lateral shear production (LSP) to vertical shear pro-

duction (VSP) providing a useful discriminator (ap-

pendix A; Thomas et al. 2013),

LSP

VSP
5

ûŷV̂
x̂

ŷŵV̂
ẑ

’a

�
12

d2

Ri

�
12

a

Ri

��
. (33)

In the case that LSP/VSP , 1 the instabilities are of

the symmetric type, for LSP/VSP . 1 and a/Ri . 1

(negative absolute vertical vorticity) the instabil-

ities are of the centrifugal type, and for LSP/VSP . 1

and a/Ri , 1 (positive absolute vertical vorticity) the

instabilities are a mixed SI/CI instability (Thomas

et al. 2013). For q0 . 0 the baroclinic mode k 5 0 will

be the fastest-growing instability, with perturbation

FIG. 13. Structure of the fastest-growing baroclinic mode for the downwelling-favorable Ekman layer (Fig. 11) at t5 10 inertial periods,

discussed in section 4. Velocities are normalized relative to the maximum across-slope velocity, buoyancy relative to the maximum

buoyancy perturbation. Kinetic energy tendency terms are defined in appendix A, with buoyancy production given by VBP, shear pro-

duction by the sum of the lateral and vertical shear production terms (LSP 1 VSP), and dissipation by DKE.
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kinetic energy increasing through the extraction of the

background state available potential energy (buoy-

ancy production).

An example regime diagram is shown in Fig. 19, as a

function of the slope Burger number and theRichardson

number. The q0 5 0 line divides the domain (dashed red

line), with the entire area to the right of the line linearly

unstable to baroclinic instability, although instabilities

at small a are likely themost physically relevant (section

2c). For q0 , 0 the domain is further divided by the

energetics, with LSP/VSP 5 1 shown from theory [(33);

dashed blue line in Fig. 19], assuming d/Ri1/25 f/N5 0.1.

Below this line the symmetric mode grows by extracting

mean kinetic energy through the vertical shear pro-

duction. Above this line the energetics are dominated by

the lateral shear production, either in a pure centrifugal

instability mode, to the left of the green line indicating

zero absolute vertical vorticity (1 2 a/Ri 5 0), or in a

mixed symmetric/centrifugal type mode, for positive

absolute vertical vorticity to the right of the green line.

Numerical solutions of (6)–(10) [with l5 0, k5 20f/(NH)]

were also used to calculate
Ð H
0
LSPdz/

Ð H
0
VSP dz5 1

(solid blue line), demonstrating that the theory provides

an accurate approximation to the energetics.

For small Ri, the dominant instability types in the BBL

are therefore likely to be of the centrifugal, symmetric, or

mixed types, with the centrifugal mode becoming domi-

nant for large S, where the topography begins to act as an

effectively vertical boundary (Dewar et al. 2015). For

FIG. 14. As in Fig. 11, but for upwelling favorable interior flow, V 5 20.1m s21.

FIG. 15. As in Fig. 12, but for the upwelling favorable case shown in

Fig. 14.
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Ri& 1 and small S, the symmetric mode is likely most

relevant (Allen and Newberger 1998). In the case that

Ri* 1, the baroclinic mode will dominate. Further, when

considering the nonlinear dynamics of the BBL, it is ex-

pected that the time-dependent adjustment of the back-

ground fields by finite-amplitude instabilitieswill lead to a

traversal of parameter space as the shear and stratifica-

tion are adjusted by eddy fluxes. Thus, even for initial

background conditions that have fastest-growing modes

of the overturning type, the baroclinic mode may emerge

later as the instabilities restratify the boundary layer. For

example, during the Ekman adjustment to a downwelling-

favorable interior flow, potential vorticity is removed at

the boundary (Benthuysen and Thomas 2012), and in the

BBL the potential vorticity can become negative. The

fastest-growing modes of the 1D solutions of section 4a

(Fig. 11) will therefore likely be of the symmetric or

centrifugal type. However, when these instabilities reach

finite amplitude they will adjust the boundary layer

stratification such that Ri ’ 1, at which point the baro-

clinic mode will dominate (Haine and Marshall 1998;

Brink andCherian 2013). Likewise, even in the casewhere

the boundary layer is forced to remain near q 5 0, as, for

instance, might occur in the case of continuing downslope

Ekman transport, growing baroclinic instability can still be

present (Callies and Ferrari 2018).

7. Summary

In this article, we considered baroclinic instability

over sloping topography, extending earlierQG results to

the nongeostrophic regime appropriate for the ocean

BBL. Importantly, weakly stratified BBLs can support a

submesoscale baroclinic instability, a BBL counterpart

to the surface baroclinic mixed layer instability (Boccaletti

et al. 2007). In the BBL these submesoscale instabilities

FIG. 16. Initial conditions for along-slope velocity (color) and

buoyancy (gray contours) for the nonlinear simulation discussed in

section 5 and appendix B.

FIG. 17. Snapshots of (top) buoyancy and (bottom) slope-normal velocity (w) evaluated at 50m above the bottom.
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are relatively insensitive to topographic slope, suggesting

they are likely a robust part of the dynamics of the ocean

BBL, along with the symmetric (Allen and Newberger

1998) and centrifugal (Molemaker et al. 2015) modes.

Two 1D theories of the BBL structure over topogra-

phy were also shown to result in solutions that are sus-

ceptible to growing baroclinic instability, with important

implications for our understanding of the dynamics of

both the BBL and the interior. In the case of a BBL

generated by turbulent mixing, a thick outer layer

supports a rapidly growing baroclinic mode that releases

available potential energy and provides a restratifying ten-

dency that is not accounted for in the 1D formulation. This

suggests that deep submesoscale baroclinic instabilities

could alter the stratification and across-slope flow

along topographic features such as the mid-Atlantic

ridge, with important implications for closure of the

abyssal circulation (Callies 2018). Likewise, interior flow

along a slope generates available potential energy in the

BBL through an across-slope Ekman flow, leading to

baroclinic growth rates that quickly exceed the rate of

Ekman adjustment. These instabilities thus have the

potential to affect both the BBL dynamics and the ex-

change between the boundary layer and interior, in both

the coastal and deep ocean.

Extensive work on the surface boundary layer has

demonstrated the leading-order role that submesoscale

baroclinic instability plays in boundary layer restratifi-

cation (Fox-Kemper et al. 2008; Johnson et al. 2016; Su

et al. 2018), vertical exchange between the boundary

layer and interior (Mahadevan and Tandon 2006), and

the surface flux of potential vorticity (Wenegrat et al.

2018). The similarities between the BBL and surfacemode

(section 2), and the large-amplitude eddy fluxes found in

the nonlinear simulation of section 5, suggest that many

of the same results may hold in the BBL.However, there

are also important differences between the surface and

bottom boundary layer that require further consider-

ation. For example, as noted in section 2, topography

shapes parcel trajectories, modifying the instability en-

ergetics and potentially the associated eddy fluxes

of buoyancy and tracers (Spall 2004; Isachsen 2011;

FIG. 18. (top) Domain-integrated EKE compared to the prediction of linear theory (cal-

culated as discussed in section 5) and (bottom) domain-averaged EKE tendency (bottom)

with components as indicated in the legends.
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Brink 2013). Further, variations in topography, not

considered here, can impose an external length scale on

instabilities (de Szoeke 1983), generate slope-normal

flow and secondary circulations (Benthuysen et al. 2015),

and modify instability growth rates (de Szoeke 1983;

Solodoch et al. 2016), all of which may alter the role of

baroclinic instability in BBL dynamics. Relaxing the

assumption of across-slope uniformity in boundary layer

height or structure may also lead to an arrest of the in-

verse cascade due to the topographic beta effect (Rhines

1975; Brink 2012). Full nonlinear simulations to explore

the finite-amplitude behavior, and parameter depen-

dence, of the submesoscale BBL baroclinic mode will

therefore be the subject of a future paper.
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APPENDIX A

Energetics

In this appendix we derive several results related to

the instability energetics. For simplicity we assume

hydrostatic dynamics, with background fields that are

uniform in the along-slope direction, and diffusion only

in the slope-normal direction. The eddy potential en-

ergy equation can be formed by taking b/N2 3 (5),

giving

PE
t
5

�
1

2

hb2i
N2

�
t

5HBF2VBP2DPE , (A1)

where

HBF52(hubi cosu2 hwbi sinu) Bx̂

N2
(A2)

is the conversion of mean potential energy to eddy

potential energy through the horizontal buoyancy

flux,

VBP5 hwbi cosu1 hubi sinu (A3)

is the conversion of eddy potential energy to EKE

through the vertical buoyancy production, and

DPE5
D k

N2
b2
z

E
(A4)

is the dissipation of eddy potential energy. In this ap-

pendix, angle brackets indicate spatial averaging, both

vertically and horizontally over a wavelength.

The EKE tendency can be formed by taking u3 (1)1
y 3 (2), and using (3) and (4), giving

FIG. 19. Example regime diagram for baroclinic instability (BI), symmetric instability (SI),

centrifugal instability (CI), and mixed instability (SI/CI) in the ocean BBL. The red line

indicates q 5 0, the green line indicates f 1Vx̂ 5 0, and the dotted black lines indicate

a 5 (1, 2)a. The dashed blue line is the theoretical expectation for LSP/VSP 5 1, given

by (33), and the solid blue line is
Ð H
0
LSP/

Ð H
0
VSP5 1 calculated using numerical solutions of

(6)–(10) with dRi21/2 5 0.1, l 5 0, and k 5 20f/(NH). See section 6 for further explanation.

2588 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 48

http://www.dedalus-project.org
http://www.gotm.net


KE
t
5

�
1

2
(u2 1 y2)

	
t

5VBP1VSP1LSP2DKE,

(A5)

where

VSP52(hywi cosu1 huyi sinu)V
ẑ

2 (huwi cosu1 huui sinu)U
ẑ

(A6)

and

LSP52(huyi cosu2 hywi sinu)V
x̂

2 (huui cosu2 huwi sinu)U
x̂ (A7)

give the conversion of mean kinetic energy to EKE

through vertical and lateral shear production, re-

spectively. Dissipation of EKE is given by

DKE5 hn(u2
z 1 y2z)i . (A8)

For the baroclinic mode the EKE source is the ver-

tical buoyancy production (VBP), which consists of

two terms related to the slope-normal and across-

slope advection of buoyancy. The ratio of these terms

scale as

hubi sinu
hwbi cosu;

L

f
tanu5

a

Ri
. (A9)

Noting that PEt . 0 requires hubi , 0, the across-slope

advection of buoyancy can be seen to reduce (increase)

VBP for a . 0 (a , 0).

Finally, for the purposes of discriminating between

centrifugal- and symmetric-type instabilities (section 6),

it is useful to find the ratio of the lateral and vertical

shear production terms. Following Thomas et al. (2013),

and assuming a geostrophically balanced along-slope

background flow, this ratio can be written as

LSP

VSP
’2

V
x̂

L tanf
, (A10)

where

f5max

�
1

2
arc tan

�
2fL

N2 2 f 2 2 fV
x̂

�
1

p

2
n

�
, n5 0, 1.

(A11)

Using Vx̂ 52L tanu, this can be written as

LSP

VSP
’

tanu

tanf
, (A12)

and

f5max
1

2
arc tan

2 tanu

a 12
d2

Ri

�
12

a

Ri

�� �
8>>><>>>:

9>>>=>>>;1
p

2
n

26664
37775,

n5 0, 1. (A13)

For the portion of parameter space considered in

section 6 (Fig. 19), the fastest-growing mode has n 5 0,

and using small angle approximations,

LSP

VSP
’a

�
12

d2

Ri

�
12

a

Ri

��
. (A14)

APPENDIX B

Configuration of the Nonlinear Model

The nonlinear simulation of section 5 is performed us-

ing Dedalus (Burns et al. 2016). The domain is 32km in

each rotated horizontal direction and 1000m in the slope-

normal direction and is decomposed using 64 Fourier

components in each horizontal direction and 256

Chebyshev modes in the vertical, giving horizontal and

vertical resolutions ofDx5Dy5 500m, andDz5 0.075–

6m. The rotated equations are solved in a horizontally

periodic domain by assuming a fixed mean across-slope

gradient in buoyancy, such that Bx 5N2
I sinu, where N2

I

is an imposed value of the interior stratification. This

configuration is thus similar to the frontal-zone setup

commonly used for studying surface mixed layer fronts

in periodic domains (e.g., Taylor and Ferrari 2010). The

initial condition is assumed to be an along-slope flow in

hydrostatic and geostrophic balance that varies only in

the slope-normal direction V(z). The rotated equations

of motion can then be written in the hydrostatic limit,

that is, d2 � 1 and d sinu � 1, as

~u
t
1 ~u � =~u1V ~u

y
2 f~y cosu52~p

x
1 ~b sinu

1 y~u
zz
1D

h
(~u) ,

(B1)

~y
t
1 ~u � =~y1V~y

y
1 ~wV

z
1 f ~u cosu52~p

y
1 n(V1 ~y)

zz

1D
h
(~y) , (B2)

052~p
z
1 ~b cosu ,

(B3)

= � ~u5 0 , and (B4)

~b
t
1 ~u � = ~b1V ~b

y
1 ~uB

x
1 ~wB

z
5 n(B1 ~b)

zz

1D
h
(B1 ~b) . (B5)
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In the above, uppercase quantities indicate the imposed

initial conditions, and time-dependent, horizontally peri-

odic quantities are denoted with the tilde notation. Spe-

cifically, the total velocity is decomposed as u(x, y, z, t)5
[~u(x, y, z, t), V(z)1 ~y(x, y, z, t), ~w(x, y, z, t)], the total

pressure divided by the reference density as p(x, y, z, t)5
P(x, z)1 ~p(x, y, z, t), and the buoyancy as b(x, y, z, t)5
B(x, z)1 ~b(x, y, z, t). Horizontal mixing is parameter-

ized using a biharmonic diffusion operator for numerical

stability, Dh(x)5 2nh(xxxxx 1 2xxxyy 1 xyyyy). Bound-

ary conditions are given by

~u5 0 , ~y52V, ~w5 0 , ~b
z
52B

z
, at z5 0 , and

(B6)

~u
z
5 0 , ~y

z
52V

z
, ~w5 0 , ~b

z
52B

z
, at

z5 1000m. (B7)

All perturbation quantities are initialized from zero,

except for ~b, which is initialized with weak random

noise. Note that no restriction is placed on the am-

plitude of the perturbations, and (B1)–(B5) are fully

nonlinear.
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