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Abstract
The Chesapeake Bay is the largest estuary in the continental United States. Extreme temperature events, termed marine
heatwaves, are impacting this ecologically important zone with increasing frequency. Although marine heatwaves evolve
across space and time, a complete spatial picture of marine heatwaves in the Bay is missing. Here, we use satellite sea surface
temperature to characterize marine heatwaves in the Chesapeake Bay. We consider three products: NASAMUR, NOAAGeo-
Polar, and Copernicus Marine OSTIA, and validate their effectiveness using in situ data from the Chesapeake Bay Program.
We find that Geo-Polar SST is the most suitable dataset for marine heatwave analysis in this location, with a root mean squared
error of 1.6◦C. Marine heatwaves occur on average of 2.3 times per year and last 10.8 days per event. A north-south (along
estuary) gradient is identified as a common pattern of spatial variability. Seasonally, summer marine heatwaves are shorter,
more frequent, and have a more consistent duration, with an inter-quartile range of 6–11 days (median=8 days). December
marine heatwaves have a much larger inter-quartile range of 6–28 days (median=13 days). Marine heatwaves are increasing
at a rate of 4 events/year in the upper Bay and 2 events/year in the main stem of the lower Bay. Our analysis suggests that
the major observed spatial patterns are a result of long-term warming, not shifts in the spread of the temperature distribution.
Overall, the qualitative character of marine heatwaves in the Chesapeake Bay is not changing but they are becoming more
frequent.
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Introduction

Anthropogenic activities have warmed the surface ocean,
with signs of surface warming going back to at least the
mid-1950s (Tyrell, 2011). In addition to increasing average
temperatures, prolonged periods of anomalously hot water,
termed marine heatwaves (MHW), have been on the rise
(Oliver et al., 2019). Extreme temperature events such as
MHWs affect marine ecosystems on the individual, pop-
ulation, and community levels (Smith et al., 2023), but
ecosystem response can differ based on the characteristics
of the MHW such as duration and rate of onset (Smith et
al., 2023). These ecosystem impacts translate into socioeco-
nomic impacts. In the US alone, economic losses “...exceed
US$800 million in direct losses and in excess of US$3.1 bil-
lion per annum in indirect losses for multiple consecutive
years” from MHW events (through October 2022) (Smith et
al., 2021). MHWs and their ecological and economic impact
are unfortunately part of our warming world.

Efforts to study MHW with satellite imagery have been
undertaken for study areas around the world (see: Mohamed
et al., 2022; Chatterjee et al., 2022; Huang et al., 2021; Oliver
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et al., 2018). Satellite imagery provides a temporally consis-
tent data source over a broad spatial scale, making it a strong
data product for the analysis of MHW. While more diffi-
cult, past work has also investigated MHW in the coastal
ocean. Marin et al. (2021)’s global coastal MHW analysis
showed increasing numbers of MHW events, with concen-
trated increases in hotspots. One of the identified hotspots is
the northeastern US coast, home to the Chesapeake Bay.

TheChesapeakeBay is the largest and one of themost pro-
ductive estuaries in the continental United States (Bilkovic
et al., 2019) (Fig. 1). The Chesapeake Bay has seen a trend
of long-term warming (Hinson et al., 2022; Ding & Elmore,
2015), and increasing temperatures have been linked to grow-
ing hypoxic conditions in the Bay (Du et al., 2018). In
addition to long-term warming, previous work has identified
MHWs in the Chesapeake Bay using buoy data (Mazzini
& Pianca, 2022; Shunk et al., 2024). Extreme temperatures
in 2005 caused an over 50% loss in the seagrass species
Z. marina in which fisheries species find nursery habitat
(Lefcheck et al., 2017). As a result, the area saw declines
in three commercially important fish species (Smith et al.,

2023). A report by the Scientific and Technical Advisory
Committee, an independent group which provides scientific
and technical guidance on environmental issues in the Chesa-
peake Bay, specifically highlighted the need to develop a
marine heatwave warning system due to the impact on living
resources (Batiuk et al., 2023).

Here, we use sea surface temperature (SST) satellite data
to evaluate the occurrence and characteristics of MHWs in
theChesapeakeBay over a 21-year period, looking at average
characteristics as well as long-term trends. We specifically
focus on patterns in the characteristics of MHWs includ-
ing duration, maximum intensity, cumulative intensity, and
rates of onset and decline. MHW characteristics are critical
for assessing the potential ecological impact and as potential
guidance toward understanding the physical causes ofMHW.
Furthermore, we investigate Chesapeake Bay MHW using
observations at a new level of geographic detail, as satellite
data enables spatial coverage that is not possible with in situ
data alone. Past work using buoys did not find significant
differences between the surface expressions of MHW char-
acteristics in the different regions of the Chesapeake Bay

Fig. 1 A map of the Chesapeake Bay, including major rivers referenced throughout this study
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(Mazzini & Pianca, 2022); however, we find that there is
spatial variation in the surface expression of several defining
characteristics of MHWs. Finally, the use of satellite data
to investigate MHWs in an estuary setting is novel. Despite
the relatively limited horizontal resolution of the observa-
tions relative to the size of the Bay, the results and validation
presented here suggest this approach can be useful for under-
standing both temporal and spatial variability of MHWs in
estuarine ecosystems such as the Chesapeake Bay.

In the “Methods” section,we introduce the chosendatasets
and describe the definition of MHWs and MHW character-
istics. In the “Results” section, we discuss the validation of
the satellite data. We also discuss the spatial and temporal
patterns in MHWs characteristics. In the “Discussion” sec-
tion, we conclude by summarizing our major findings and
propose routes for future analysis.

Methods

Satellite Data Sources

The satellite data products potentially suitable for this study
are those with a fine spatial grid, a daily frequency, and a
long operating period. The need for the high spatial grid is
driven by the size of the Chesapeake Bay. The need for a
daily frequency is due to the 5-day length definition for an
MHW. Finally, the need for a long operating period is driven
by the baseline climatology required for MHW calculations.
Hobday et al. (2016) recommends a 30-year climatology.
However, past work has shown no appreciable difference in
MHW duration or intensity calculated from climatologies
based on records as short as 10 years when compared with
those calculated using the recommended 30-year time series
(Schlegel et al., 2019).

Three satellite SST products fulfilling these criteria were
evaluated as candidates for this study: NASA MUR v4.1,
NOAA Geo-Polar Blended v2.0, and Copernicus Marine
OSTIA v1.3.5. NASA MUR is a daily ∼1km level 4 prod-
uct based on nighttime SST observations and provides an
estimate of the foundation temperature (Chin et al., 2017).
Foundation temperature, as defined by the Group for High-
Resolution Sea Surface Temperature (GHRSST), is the
temperature at a depth free of diurnal variability (Donlon

et al., 2007). NOAAGeo-Polar is also a daily level 4 product
and has ∼5km grid resolution (Maturi et al., 2017). Coper-
nicus Marine OSTIA is a daily level 4 product which also
has ∼5km grid resolution (E.U. Copernicus Marine Service
Information (CMEMS), 2023; Donlon et al., 2012). These
level 4 products provide variables derived from a combina-
tion of multiple other measurements (The Group for High
Resolution Sea Surface Temperature Science Team et al.,
2022). Geo-Polar provides estimates of both daytime and
nighttime SST. In this study, nighttime SST is used to more
closely estimate the foundation temperature for compari-
son with NASA MUR and Copernicus Marine OSTIA. See
Table 1 for a summary of the three datasets. All datasets are
gap-filled such that any no-data values (ex. data gaps caused
by clouds) are filled in by spatial and temporal interpolation
with estimated SST values. Seven days of data in the Geo-
Polar dataset were removed by NOAA data processing due
to quality control, as were 3 days of the MUR dataset. These
missing days were linearly interpolated in time for each pixel
when generating the climatology.

Marine Heatwave Calculation, Characteristics, and
Long-TermTrends

Hobdayet al. (2016) established the canonical definitionof an
MHW: anMHWoccurswhen the temperature rises above the
90th percentile temperature for that day and persists above
the daily 90th percentile value for at least 5 days. This is
illustrated in Fig. 2a. If an event exceeds the 90th percentile
threshold but does not last 5 days it is called a heat spike. The
time period for the climatology is the full dataset time period,
Jan. 1, 2003, to Dec. 31, 2023 (21 years). Again following
Hobday et al. (2016), the 90th percentile threshold for each
day uses the days from a centered 11-day window. After the
threshold is calculated, the values are smoothed using a 31-
day moving average. If multiple MHWs longer than 5 days
occur within 2 days of each other they are considered to be a
singleMHWevent.MHWswere calculated using the Python
software packagemarineHeatWaves (Oliver, 2023). The pro-
cedures described above are the defaults of this package and
are consistent with the recommendations in Hobday et al.
(2016).

In addition to identifying MHW, the MHW processing
computes a variety of MHW characteristics, which allow us

Table 1 Satellite SST data sources

Product name Version Organization Spatial grid Temporal resolution Availability

MUR 4.1 NASA 0.01◦(∼ 1km) daily May 31, 2002 - present

Geo-Polar Blended 2.0 NOAA 0.05◦(∼ 5km) daily Sept. 1, 2002 - present

OSTIA 3.5 Copernicus Marine 0.05◦(∼ 5km) daily Dec. 31, 2006 - present
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Fig. 2 The observed and climatological values of a MHW from July
2020 in the Tangier Sound in the Middle Chesapeake Bay (38.03◦N,
75.97◦W), illustrating the definitions of aMHWandMHWcharacteris-
tics defined inHobday et al. (2016). a visualizes a sustained temperature

anomaly exceeding the 90th percentile threshold value defining an
MHW. b shows SST focused on the heatwave period, labeling the 5
MHW statistics used in this study to characterize MHWs
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to consider different types of MHW. Two extreme tempera-
ture events could both be MHW, but still have very different
characteristics and thus correspond to different ecological
impacts or physical processes of development. The 6 char-
acteristics analyzed in this study are (1) number of annual
events, (2) duration, (3) maximum intensity, (4) cumulative
intensity, (5) rate of onset, and (6) rate of decline. Figure2b
shows a graphic representation of the MHW characteristics
for an example heatwave in July 2020 (see also Hobday et
al., 2016).

While most of the analysis presented here used the MHW
definition from Hobday et al. (2016), we also performed our
analysis using a linearly detrended SST baseline to remove
the long-term warming signal. To do this, we performed a
linear fit on the raw satellite SST timeseries, then subtracted
the linear trend from the SST. After removing the long-term
trend the remainder of the MHW calculation was calculated
as described in the previous paragraph. These results are dis-
cussed in the “Long-TermMarine Heatwave Trends” section
below.

To aid in understanding changes over time an analysis
of long-term trends in MHW characteristics is performed.
Each pixel in this analysis is treated as an independent time
series. Each time series is grouped into annual bins and
average MHW characteristics are computed per year. These
annual values were then fit to a linear trend and the slope
and significance were calculated for the 21-year times series.
Significance testing was performed using a one-sided stu-
dent t-test on each pixel in the bay and spatial patterns were
evaluated using multiple hypothesis testing (Wilks, 2016).
Multiple hypothesis testing accounts for the number of false
positive trends that would be expected in a sample of our size
using a false discovery rate, in this study set to 10%.

Satellite Data Validation

In situ data compiled by the Chesapeake Bay Program
(CBP) was used to validate satellite SST in the Chesapeake
Bay (Chesapeake Bay Program, 2020). The database con-
tains measurements from the CBP partner organizations at
long-term, fixed monitoring stations, including ship-based
observations.Traditional PartnerData from all the programs
was used.

The satellite datasets all estimate foundation SST. The
in situ data, on the other hand, provide measurements of
SST at multiple times of day and depths. To approximate the
foundation temperature values from the in situ dataset, only
temperature values between 1 and 3m depth were used. This
was done to avoid very near-surface measurements, which
are likely subject to stronger diurnal temperaturefluctuations.
The sensitivity of this depth choice was tested by comput-
ing the RMSE between in situ and satellite SST values with
several depth choices ranging from 0.5 to 7m. The RMSE

Fig. 3 Locations of CBP validation stations for evaluating the SST
(green points) and the SST anomaly (purple points). Underlying
imagery is the mean Geo-Polar SST from the study time period of
Jan. 1, 2003 to Dec. 31, 2023

changed by 0.1◦C or less in all depth choices. The validation
period was a 21-year period from Jan. 1, 2003, to Dec. 31,
2023.

Two subsets of the CBP data were used for validation. The
first subset is comprised of 483 stations used to validate the
SST observations from the satellites. This was done to get
an understanding of raw dataset error and may additionally
provide insight for other potential uses of satellite SST in the
ChesapeakeBay. The second set is comprised of stationswith
long enough temperature records to generate a climatology
and compute the SST anomaly. The analysis from these 51
stations gives an error assessment which is more indicative
of expected errors in theMHWcalculation. The distributions
of each of these two sets of validations are shown in Fig. 3,
overlaid on top of the mean SST from Geo-Polar.

To evaluate the accuracy of the three satellite datasets in
measuring SST, the observed temperature from each satellite
dataset was compared to in situ observations. All satellites
have RMSEs of less than 2◦C. Geo-Polar had the least mean

Table 2 Satellite SST mean errors

Product
name

Slope Intercept (◦C) RMSE (◦C) R2 Mean
bias (◦C)

MUR 0.98 0.15 1.81 0.95 −0.52

Geo-Polar
Blended

0.98 0.14 1.57 0.97 −0.50

OSTIA 0.97 0.22 1.60 0.96 −0.49
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Fig. 4 Density plots of surface temperatures for MUR SST, Geo-Polar
SST, and OSTIA SST data products as compared to the Chesapeake
Bay Program (CBP) in situ dataset. The left panel shows MUR and the

right panel shows Geo-Polar. Green lines on each plot show the linear
fit of observations. Geo-Polar has less variance than MUR, while both
datasets underestimate extreme values

error and MUR had the most, although the difference was
only about 0.2◦C. All datasets are also on average biased
about 0.5◦C cold. (Table 2). In addition to a smaller RMSE
Geo-Polar has less variance than MUR. MUR had more out-
liers, although all datasets underestimated extreme values
(Fig. 4). All datasets are most accurate in the main stem of
the Bay and least accurate closer to shore (Fig. 5). Geo-Polar
and OSTIA have the largest errors in the upper Potomac
and the outflow of the Susquehanna River, while MUR has

the largest errors on the western shore rivers north of Balti-
more, such as the Gunpowder and Bush Rivers. MUR also
generally has a higher mean error than the Geo-Polar near
the Eastern shore. Overall, Geo-Polar and OSTIA are fairly
similar. MUR performs on a similar order of magnitude as
the other two datasets but is slightly less accurate by most
metrics.

Twopossible reasons for the land edge cooling effect along
the shoreline were considered. These coastal errors could be

Fig. 5 Spatial distribution of the mean error between the satellite SST datasets and the Chesapeake Bay Program in situ data. Both datasets are
most accurate in the main stem of the Bay and have the largest errors near shore. The areas of largest error vary between the two satellites

123



Estuaries and Coasts           (2025) 48:113 Page 7 of 21   113 

due to the land surface decreasing temperature faster at night
when compared to the ocean, biasing down the observations
in nearshore pixels. Another factor may be the different diur-
nal temperature cycles in the main stem of the Bay and the
tributaries. The depth averaging process was done to account
for the fact that most CBP measurements were taken during
the day. This choice may not mitigate the diurnal cycle of
daytime warming in the well-mixed tributaries as well as it
does in the deeper, less well-mixed main stem of the Bay.

As extreme temperature events, MHWs are deviations
from a climatological mean. Because of this, mean error in
the daily climatological SST values does not affect theMHW
calculation as it is eliminated when subtracting the daily cli-
matological value from the anomalySSTvalue.Whatmatters
instead is whether the temperature anomaly from the daily
climatology (i.e., the difference between the observed SST

and the daily climatological SST value) is accurate. Here,
we evaluate the suitability of the satellite SST for analyzing
MHWs using the error in the SST anomaly from a daily cli-
matology as opposed to the error in the raw SST value. This
method of validation better reflects expected errors in our
MHW analysis.

To compare the satellite and in situ data, the SST anoma-
lies were computed for observations over the 21-year period.
Due to a sparsity of measurements in the in situ data, the
climatologies were computed on a monthly basis. In situ
anomaly SST values were then computed as deviations from
the monthly climatology. For most similar comparisons of
the CBP and satellite datasets a subset of satellite data com-
prised of days with collocated CBP measurements was used.
The same process used for the CBP data was then used for
the satellite dataset. A monthly satellite climatological value

Fig. 6 The left panel shows the monthly distribution of in situ observa-
tions for each of the anomaly validation stations used. The color shows
the number of months in the 21-year time series that had at least one
observation. The right plot shows the spatial distribution of anomaly

validation stations, colored by the total number of observations. Valida-
tion stations cover the majority of the main stem of the Bay and several
important tributaries. There is a seasonal bias in observations; however,
winter months are still represented
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Table 3 CBIBS buoy data sources

Buoy name Section Approx. latitude Approx. longitude Operating years No. of days of observations

Annapolis Upper 38.96◦N 76.45◦W 2013-present 2308
Goose’s reef Middle 38.56◦N 76.42◦W 2011-present 3107
Stingray point Lower 37.57◦N 76.26◦W 2012-present 3532

was computed using the CBP-collocated subset of observa-
tions. The anomaly value was computed by subtracting the
observed SST from the monthly climatological value. In situ
data was compared with the one collocated satellite pixel
from the day of the in situ observation. The original in situ
dataset was filtered substantially to achieve this calculation.
Of the several hundred stations in theCBPdataset, 51 stations
were identified with sufficient temporal coverage to compute
a climatological baseline. There is a consistent seasonal sam-
pling bias among the CBP in situ stations, in which summers
are more highly sampled than winters (Fig. 6). To minimize
the impact of this bias on our analysis, stations were vetted
by both the number of observations and the monthly consis-
tency of observations. A station needed to have at least one
observation every month in at least 57% of the years (12 of
21 years). Stations were also required to have at least one
observation per month in 10 of the 12 months in 86% of the
years (18 of 21 years). At the end of this station selection
process there remained a seasonal sampling bias; however,
winter months were still represented.

Figure6 shows the spatial distribution of the anomaly val-
idation stations. The most important area for our analysis,
the main stem of the Bay, is well covered by validation sta-
tions, with the exception of one portion of the lower bay. The
Potomac River and Susquehanna outflow are also well cov-
ered, as aremany of the Eastern shore river outflow regions in
the upper and middle bay. The major lower Bay rivers, how-
ever, including the Rappahannock, the York, and the James,
do not have any validation stations with a long enough record
to be used for anomaly validation. We, therefore, focus our
analysis of tributaries on those with validation stations. Val-
idation data is important for assessing the effectiveness of
space-borne satellite monitoring for estuaries such as the
Chesapeake Bay. Increased in situ observations (which meet
the criteria for evaluating MHWs as described above) in the
under-sampled areas of the Bay would be valuable to future
investigations.

Finally, we evaluated the likelihood that errors in satellite
measurements would correlate temporally causing spurious
identification ofMHWs. To do this, we computed the tempo-
ral autocorrelation of the error in water temperature anomaly
from climatology. The in situ dataset does not provide the
temporal resolution to compute autocorrelation with a daily
lag, so buoy data fromNOAA’s Chesapeake Bay Interpretive
Buoy System (CBIBS) was used instead. Past work compar-
ing buoy data with satellite data can be found in Mazzini
and Pianca (2022). We selected 3 buoys, one each in the
Upper, Middle, and Lower Bay (Table 3). The Upper Bay
buoy only had about 6 years of observations, but was still
included for spatial coverage. Only nighttime (12–7 am local
time) buoy measurements were used to match the satellite
SST foundation temperature definition and missing data in
the buoy record was dropped when calculating autocorrela-
tion. The decorrelation timescale was computed and defined
as the number of days at which the autocorrelation dropped
below e−1.

Effects of Satellite SST Errors onMarine Heatwave
Calculations

Using satellite SST in the narrow Chesapeake Bay pushes
the limits of these satellite datasets. To understand the poten-
tial impact of satellite data on the robustness of the MHW
analysis, we considered the following forms of error: (1)
mean error, (2) frequency distribution (histogram) of satellite
errors, (3) temporal autocorrelation of error, (4) long termand
seasonal variability in satellite errors, and (5) spatial variabil-
ity in satellite errors. Not all forms of errors in the satellite
SST product, however, will propagate to the MHW calcula-
tion in the same way.

To assess the mean error between the satellite and in situ,
SST anomaly estimates of slope and root mean squared error
(RMSE) were used (Table 4). Due to the presence of outliers

Table 4 Satellite SST anomaly mean errors

Product name Slope Intercept (◦C) RMSE (◦C) R2 Mean bias (◦C)

MUR 0.86 0.19 1.42 0.53 0.0007
Geo-Polar Blended 0.81 0.01 1.00 0.70 0.0024
OSTIA 0.78 −0.04 1.06 0.67 −0.0995
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in this dataset regressions were computed using a robust lin-
ear regression with a Tukey Biweight norm. Results from the
three satellite datasets were quantitatively similar, with Geo-
Polar performing the best in RMSE. The slopes of less than
1 with intercepts close to 0 indicate that both datasets under-
estimate extreme values, suggesting that our results could
be an underestimate of extreme events. All three datasets
have very low mean biases, with the largest mean bias being
−0.1◦C in OSTIA. These relationships and the lower vari-
ance of Geo-Polar can also be seen in the distributions of
Fig. 7. Underestimates in extreme values would result in
lowermaximum intensities and could also contribute to lower
cumulative intensity, rate of onset, and rate of decline. Due to
the lower RMSE, we chose to calculateMHWusing theGeo-
Polar Blended SST product. The remainder of our validation
results are therefore only shown for Geo-Polar.

For the purposes of MHWs, errors need to be adjacent in
time to produce falseMHW. To evaluate this, we estimate the
error decorrelation timescale. For all 3 of the tested buoys,
the decorrelation timescale was either 3 or 4 days, less than
the 5-day minimum length of an MHW. So while the SST
mean anomaly errors are non-negligible they decorrelate on a
timescale shorter than the threshold for MHW identification.

Lower-frequency temporal variation is another important
form of potential bias in satellite errors. A Hovmöller plot
shows there is no consistent seasonality in anomaly errors
(Fig. 8). Summers, however, do show a long-term trend in

error from March through August. These months underesti-
mate anomaly values prior to 2011 and overestimate anomaly
values in 2011 onward. This increasing long-term error could
lead to an overestimate in the long-term trend in summer-
timeMHWoccurrences and intensity, discussed further in the
“Long-Term Marine Heatwave Trends” section. Hovmöller
plots for all three satellites are available in the supplemental
material.

Spatially, the mean error displayed very little variation
(Fig. 9), indicating that spatial variations in MHW, the focus
of this paper, are likely not unduly influenced by satellite
errors. In contrast, the long-term trend in the error was largest
in the upper bay and insignificant in most of the lower bay.
Several of the lower bay tributaries, including the Rappa-
hannock, the York, and the James Rivers, did not have any
validation stations (Fig. 6). Because of this, we proceed with
caution when interpreting results in these tributaries.

We note the primary caveat in our validation analysis is
uncertainty in the approximation of foundation temperature
from the in situ data for comparison with satellite SST.While
the calculation of foundation temperature in the open ocean is
well-established, identifying this depth in the dynamic estu-
arine setting is more difficult. Some shallow areas of the
Bay are very well mixed with no depths free of diurnal tem-
perature variability. Additionally, in estuaries tidal advection
and diurnal variability from the solar heating cycle can be of
the same order of magnitude. This makes a direct compar-

Fig. 7 Density plots of the anomaly error for MUR SST, Geo-Polar
SST, and OSTIA SST products as compared to the Chesapeake Bay
Program (CBP) in situ dataset. The left, center, and right panels show

MUR, Geo-Polar, and OSTIA, respectively. Green lines on each plot
show the linear fit of observations. Geo-Polar has less variance than
MUR, while all datasets underestimate extreme values
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Fig. 8 The error in SST anomalies from climatology for Geo-Polar by
month and year. Each pixel corresponds to the average satellite anomaly
error for all pixels in theBay during that year (x axis) andmonth (y axis).
The colorbar shows satellite SSTminus in situ measurements, such that

negative (blue) values represent satellite SST underestimates of in situ
temperature anomaly. Geo-Polar SST has a long-term trend in the error
in SST anomaly from climatology over time in summer months, but no
consistent seasonal error

ison between satellite estimates of foundation temperature
and in situ SST measurements less clear and complicates
error estimation. Overall, we expect our analysis to under-
estimate the maximum intensity and may overestimate the
strength of long-term trends. However, the fast decorrela-
tion timescale of errors relative to the MHW identification
threshold is expected to limit the effect of errors on the identi-
fied patterns ofMHWcharacteristics.We address the relative
magnitudes of these effects in the context of our results in
the “Results” section.

Results

Temporal Marine Heatwave Characteristics

Many major documented MHWs in the Northwest Atlantic
Ocean also appear in the Chesapeake Bay, including MHWs

in summer 2012 (Mills et al., 2013), winter 2015–2016/fall
2016 (Pershing et al., 2018), and early spring 2017 ( Gawar-
kiewicz 2019). One MHW of particular interest for the Bay
was a September 2005 heatwave, during which anomalously
high temperatures were shown to decrease commercially rel-
evant seagrass habitat (Smith et al., 2023). The evolution of
this MHW is shown in Fig. 10 as an example of the capabil-
ities of the satellite data and to contextualize the aggregate
statistics presented later. The MHWfirst emerged in the cen-
ter of the Bay, expanded to encompass most of the main stem
by the peak, and then receded beginning in the upper Bay.
The last area to experience high temperatures was the mouth
of the Bay. The strongest anomalies were in the upper bay
near Baltimore. While this MHW affected the full Bay and
decayed toward the Bay mouth, other MHW shows different
patterns of spatial evolution. For example, someMHWbegin
in the river outflow regions. Additional work could consider
these different spatial patterns of evolution and decline, as
they may give insight into different driving mechanisms.
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Fig. 9 Maps display the spatial distribution of error across the vali-
dation stations. The left figure shows the mean error. The right figure
shows the long-term trend in the error. Only stations with a signifi-
cant trend are displayed (p value less than 0.05). The mean error is

consistent throughout the Bay, but the long-term trend in error shows
a north/south gradient, discussed further in the “Long-Term Marine
Heatwave Trends” section

The frequency ofMHW in the Chesapeake Bay is increas-
ing over time (Mazzini & Pianca, 2022), consistent with the
global trend (Oliver et al., 2018). Figure11 shows the num-
ber of annual MHW events over time in the upper, middle,
and lower sections of the Bay. All SST pixels over each of
the three sections were averaged together to generate a single
annual result. The results from our analysis are shown along-
side results from Mazzini and Pianca (2022), which derive
MHW frequency from buoy data. There is good agreement
between the buoy-derived MHW frequency and the satellite-
derived MHW frequency. Mazzini and Pianca (2022) found
that there were on average 2 MHW per year with an average
duration of 11 days per year, resulting in an average of 22
MHW days per year. The satellite-derived MHW produces
consistent results, with a bay-wide average of 2.3 MHW per
year and 10.8 days / MHW for a total of 25 MHW days per
year. Comparison of these results with Mazzini and Pianca
(2022) provides a further form of validation of our approach.

BecauseMHW is defined relative to a daily climatological
baseline, MHW can occur at any time of the year. Figure12
shows monthly aggregations of MHW for the 6 MHW char-
acteristics. Each MHW in the dataset is counted once and
grouped into themonth inwhich it started. Errors in themedi-
ans are computing using 2000 iterations of bootstrapping. In
the Chesapeake Bay, there is statistically significant season-
ality in all six characteristics with an approximate doubling
between the minimum and maximum values of each char-
acteristic. MHWs are most prevalent in the Summer with a
secondary spike in January. Mazzini and Pianca (2022) also
found a summertime peak inMHW; however, becauseMazz-
ini and Pianca (2022) aggregate by season instead of month,
it is not clear if their buoy-based analysis also showed a Jan-
uary spike. MHW duration has an inverse relationship to the
number ofMHWs,with duration peaks inMarch andDecem-
ber. MHW that begin in December andMarch have durations
that are highly variable, as opposed to summer MHWwhich
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Fig. 10 Evolution of temperature anomaly during a 2005 MHW. The 4 panels show 4 dates throughout the MHW: September 17th, September
20th, September 22nd, and September 27th. Only pixels with an identified MHW are plotted

have more consistent durations. Maximum and cumulative
intensity follow the duration pattern, indicating that MHW
that begin in March or December are the longest lasting and
have high maximum intensities. A subsurface MHW study
by Shunk et al. (2024) found that MHW in the Chesapeake
Bay follow two regimes: a spring-summer regimewhere tem-
perature anomalies are confined to the mixed layer and a
fall-winter regime that is more vertically homogeneous. The
satellite observed seasonality in duration, with the longest
MHW in the winter, could be related to the presence of tem-
perature anomalies throughout the water column and slower
rates of decline due to the larger volume of water experienc-
ing anomalies. Rates of onset and decline both have peaks
in the Spring and Fall, although they differ in that the rate

of onset remains high in January/February while the rate of
decline decreases in this same period. The overall variation
is large—with all characteristics experiencing at least a dou-
bling between the minimum and maximum months.

The bay-wide average of about 25 MHW days per year is
overall spatially uniform (Fig. 13). Considering only MHW
days, however, obscures significant spatial variability in the
duration and frequency of MHWs in the Bay. An average
number of annual MHW and MHW duration show a north-
south gradient, ranging from about 2–3 MHW per year and
MHW durations between 8 and 13 days. The average num-
ber of annual MHW is highest in the northern areas of the
Bay while the averageMHWduration is highest is the south-
ernmost regions of the Bay. The counteracting north-south
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Fig. 11 Time series ofMHW frequency in the upper, middle, and lower
sections of the Chesapeake Bay. (See Fig. 6 for Bay regions). The fre-
quency ofMHW is increasing in all three regions of the Bay. Frequency
calculated using Geo-Polar SST, plotted in red, is shown alongside

MHW frequency derived from buoys, plotted in gray. Buoy-derived
MHW frequency was reported in Mazzini and Pianca (2022). Regional
MHW frequencies are consistent between Geo-Polar and buoy-derived
MHW characteristics

gradients of these two fields lead to the uniform pattern of
MHW days. To summarize, over the last 21 years in the
Chesapeake Bay longer, less frequent heatwaves are found in
the southern regions of the Bay while shorter, more frequent
MHW characterize the northern regions. Spatial patterns
such as this one are not evident when viewing averaged quan-
tities, as the overall number of MHWs days does not vary
significantly across the Bay. In the following section, we
direct our focus to further consideration of spatial variability
in MHW characteristics.

Marine Heatwave Characterization

Satellite observations give a finer-grained look at the devel-
opment and spatial structure ofMHWs. This information can
suggest physical mechanisms behind MHW development
or decay or provide higher-resolution insights for resource
managers. Here, we look at spatial variability in 6 MHW
characteristics, each of which indicates something different
about the evolution or potential impact of the MHW. The
6 characteristics are (1) average number of annual events,
(2) average MHW duration, (3) average maximum inten-
sity, (4) average cumulative intensity, 5 average rate of onset,
and (6) average rate of decline. The first two characteristics
are shown in Fig. 13, and the remaining 4 characteristics are
shown in Fig. 14.

MHW characteristics were aggregated to produce maps
showing the average value for each characteristic across the
full 21-year time series. The end result is 6 maps, one for
each of the aggregated MHW characteristics across the Bay.
In addition to the 6 aggregated characteristics in the diagram,

average intensity was considered, but was found to closely
follow patterns in the maximum intensity and therefore is not
shown here.

The dominant pattern of spatial variation in MHW char-
acteristics is a north-south gradient in the number of events
and duration, as discussed in the “Temporal Marine Heat-
wave Characteristics” section. This north-south pattern is
also evident in cumulative intensity. Cumulative intensity
is a reflection of two aspects of a heatwave: duration and
intensity. AnMHWcan have high cumulative intensity either
because the MHW has a long duration, it has high maximum
intensity or both. In the Chesapeake Bay, MHW cumulative
intensity is largest near the mouth of the Bay and minimum
in the upper bay, suggesting it is more strongly influenced
by duration than by maximum intensity (Fig. 14). Average
MHW duration doubles between the lowest and highest val-
ues in the Bay, while average maximum intensity changes
by only a factor of about 1.3. One deviation from the over-
all north-south gradient is the estuarine turbidity maximum
(ETM), located just north of Baltimore (∼39.3◦N). The ETM
is a region of increased turbidity where salty ocean water
collides and mixes with fresh river outflow. The ETM can
be seen distinctly in 5 of the 6 MHW characteristics, includ-
ing in characteristics that do not have a north-south gradient
(maximum intensity and rate of decline).

Because maximum intensity is the maximum temperature
anomaly relative to the daily climatological baseline, high
maximum intensities could be a result of a larger standard
deviation in temperature values in a particular section of the
Bay. The high maximum intensity could also be related to
depth, as the shallower water may heat more effectively dur-
ing an MHW; however, we did not find depth to be strongly
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Fig. 12 Monthly distributions of six MHW characteristics defined as
shown in Fig. 2: A the mean area experiencing an MHW with error
bars, BMHW duration, C maximum intensity, D cumulative intensity,
E rate of onset, and F rate of decline.B–F each show the 25th, 50th, and
75th percentile values in the box plots. The error, computed using 2000

iterations of bootstrapping, is represented by a notch in the box plot.
The error bars in A are computed using the standard error of the mean.
Each MHW is counted in the month in which it started. There is clear
seasonality in all of the characteristics, with an approximate doubling
between maximum and minimum monthly values

correlated to MHW intensity (see supplemental material).
Past work has shown that low-land rivers are extremely sen-
sitive to air temperature (Piccolroaz et al., 2018), a common
driver of marine heatwaves.

The rate of onset and decline are two particularly impor-
tant characteristics for understanding the mechanisms of

MHW development and decline. The rate of onset showed
an approximately 1.5-fold difference between the highest
and lowest values in the Bay (Fig. 14). MHW develops the
quickest in the upper Bay where temperature anomalies can
increase at almost 0.5◦C per day. Relative to the rate of onset,
the rate of decline is more uniform in the main stem of the
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Fig. 13 The spatial distribution of the average number ofMHWdays per year using Geo-Polar SST. The average number ofMHWdays is calculated
by multiplying the average number per year by the average duration. Hashed lines denote areas where anomaly SST validation data is not available

bay (approximately 0.4◦C/day). Shunk et al. (2024) found
that air-estuary heat flux changes, primarily from latent heat,
are the leadingdriver ofMHWonset anddecline in theChesa-
peake. However, the spatial variability in rates of onset and
decline in the satellite data may suggest an additional role
for other processes in the development and decay of MHW
in the main stem of the Bay. Further investigation into the
finer-scale spatial structure of the rates of onset and decline
could be an avenue of future research into drivers of MHW
in the Bay.

Long-TermMarine Heatwave Trends

Our analysis of long-term trends (see the “Marine Heat-
wave Calculation, Characteristics, and Long-Term Trends”
section) suggests that almost the entire Bay is experiencing
significant increases in the number of annual MHW events
(Fig. 15). The largest values are close to an increase of about
5 additional MHW events per decade, or an approximately
10% increase in number of annual MHW events over the
period of 2003–2023. There is significant spatial variation,
seen in the factor of 3 difference between the highest and
lowest rates of increase in annual MHW events. The upper
Bay, which experiences themost frequent but shortestMHW,
is also the area that has the greatest increases in the number of
MHW. The only section of the Bay that does not see signifi-
cant increases in the number of events is themouth of theBay.
In contrast, average duration and cumulative intensity did not
show statistically significant increases over this time period.
Given that cumulative intensity structure was controlled by

duration we would expect that these two would show a sim-
ilar trend, or lack thereof. In summary, we are seeing that
for most of the main stem of the Bay, the qualitative charac-
ter of MHWs is not changing, as MHWs are not longer nor
are they more intense, but there are more MHWs occurring.
This extends the findings of Mazzini and Pianca (2022), who
found increases in frequency but no trend in duration at sev-
eral moorings in the Bay over their study period, 1986–2020.

The error analysis in the “Effects of Satellite SST Errors
on Marine Heatwave Calculations” section revealed spatial
variability in the long-term error that mirrored the observed
trend for a number of MHW: largest in the upper Bay and
decreasing to the south.While this trend could raise concerns
about the observed spatial patterns, the relative magnitudes
of the error and the observed signal give confidence in the
results. In the upper Bay, the error in long-term trend is the
largest, at ∼1◦C/decade (Fig. 9). The observed increase in
MHW intensity upper Bay shows an increase of about 2.4◦C
per decade (upper right panel of Fig. 15). Subtracting the
calculated error from theMHWintensity implies there is still,
at a minimum, 1.4◦C per decade increase in MHW intensity
in this portion of the Bay.

While a large body ofMHW literature has centered on the
definition of an MHW with a fixed climatological baseline
described in Hobday et al. (2016), there is a growing body of
work utilizing a detrended SST for the climatological base-
line (ex. Jacox et al., 2020). These two approaches provide
different insights into future change and resource manage-
ment (Amaya et al., 2023). Here, we calculate an annual
number of MHW events with a detrended SST to highlight
which aspects of the spatial pattern are related to long-term
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Fig. 14 Spatial maps showing the distribution of 4 MHW characteristics. Maps show an aggregation (either sum or average) of across time for
each pixel. Hashed lines denote areas where anomaly SST validation data is not available

warming as opposed to changes in extreme events. The differ-
ences between the fixed and detrended climatologies suggest
that the processes that generate MHW in these locations
are attributable to long-term warming. This is the case for
much of the upper Bay and is shown in red in Fig. 16C. This
decrease in MHW events in the upper Bay is also seen in the
weaker north/south gradient in the detrendedMHWanalysis.

These data suggest that changes in MHW in the Chesa-
peake are not due to changes in the spread of temperatures,
or an increase in extreme values, but rather due to changes
in the mean temperature. There are no significant long-term
trends in any MHW characteristic when computing MHW
characteristics using the detrended climatology, evidence that

increases are due to changes in the mean temperature. Past
work has also attributed MHW trends to a long-term change
instead of increases in extreme temperature values (Mazzini
& Pianca, 2022).

Discussion

Estuarine environments provide critical ecological and eco-
nomic value; however, studies of estuarine marine heatwaves
have been scarce. Availability of monitoring data is a com-
mon limitation, and buoy data does not provide a highly
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Fig. 15 Long-term trends inMHWcharacteristics. Plots show the slope
of a linear regression on each pixel in increases per decade. Only those
pixels considered statistically significant undermultiple hypothesis test-

ing with a false discovery rate of 10% were included. Hashed lines
denote areas where anomaly SST validation data is not available

resolved spatial structure, which can limit understanding of
impacts and drivers. Here, we used satellite data to provide a
novel, spatially resolved picture of MHW in the Chesapeake
Bay.

Three satellite SST sources, NASA MUR, NOAA Geo-
Polar, and Copernicus Marine OSTIA, were evaluated
against in situ measurements. All datasets likely under-
estimate extreme values and over estimate summertime
long-term trends but show spatial consistency in SST anoma-
lies. Validation work such as this is critical for the accurate
interpretation of global SST datasets in coastal zones. This
validation was possible because of the availability of in situ
validation data, but this resource is not as widely available
in every estuary. While estuaries differ in dynamic condi-
tions and seasonal variability, the successful use of satellite
SST in the Chesapeake suggests that the application of satel-
lite SST for spatially resolved temperature studies in other
large estuaries may be possible. The use of well-calibrated

regional models may provide an alternate method for val-
idating the use of satellite data in estuaries where there is
otherwise insufficient in situ data.

MHW characteristic maps reveal spatial variation in the
Chesapeake, where the dominant pattern of variability is a
north-to-south (along estuary) gradient. The spatial structure
reveals that cumulative intensity is dominated byMHWdura-
tion, not max intensity. This result, coupled with the strong
bay-wide variation inMHWduration, highlightsMHWdura-
tion as a key MHW characteristic in the Chesapeake Bay.
TemporalMHWanalyses show increases inMHWfrequency
over time and an average of 25 MHW days per year bay-
wide. Increases in MHW events in the lower Bay result
in approximately 5 additional annual events per decade, a
near doubling of MHW frequency over the 21-year satel-
lite period. Comparison of these results with a detrended
SST analysis suggests that long-term warming influence on
MHW characteristics is particularly influential in zones of
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Fig. 16 Aggregatedmaps showing the average number of annualMHW
events usingA unmodified SST and B detrended SST.C The difference
of the two. Red zones in C show where MHWs are attributable to long-

termwarming.We see the strong influence of long-termwarming on the
number of annual MHW events in the upper Chesapeake Bay. Hashed
lines denote areas where anomaly SST validation data is not available

river influence. Confidence in long-term trends is tempered
by changes in satellite error over time, pointing to the criti-
cality of periodic reanalyses of satellite data to identify and
correct for systematic errors. Satellite-derived MHW analy-
sis is consistent with past buoy-based analysis fromMazzini
and Pianca (2022), giving confidence in the accuracy of this
new technique. Given that the satellite data likely repre-
sents an underestimate of temperature (“Effects of Satellite
SST Errors on Marine Heatwave Calculations” section), it
is possible these trends are even stronger. Increased spatial
resolution and clarity into regional trends in MHW charac-
teristics benefit our understanding of extreme temperature
events in the Chesapeake Bay and could benefit monitoring
efforts that help mitigate the high economic impact and con-
serve protected waters.

The success of this satellite technique for analyzingMHW
in rivers is not entirely clear. There are some available valida-
tion stations in the Potomac andSusquehanna outflow region;
however, the performance of the satellite data in these regions
appears mixed. The anomaly SST errors—most relevant for
MHW calculations—are relatively small (Fig. 9); however,
the large mean SST errors of 3–4◦ Celsius suggest caution
is warranted. In the lower tributaries of the Bay (the Rap-
pahannock, York, or James rivers), we are limited by a lack
of long-term monitoring stations in the river tributaries to
provide validation data. The relatively small anomaly errors
in the Potomac, however, suggest that the satellite data pro-
duces reasonable marine heatwave results in the tributaries.
The lack of in situ data for observingmarine heatwaves high-
lights the importance of satellite data to provide observational
coverage in these regions. The Bay tributary regions are crit-
ical areas for resource managers. Further improvement or

algorithmic development focusing on these regions or addi-
tional satellite products with higher spatial resolutions would
be of scientific and public benefit.

While our results show that increasing MHW is due
to long-term warming; past work investigating long-term
warming in the Chesapeake Bay shows that surface warming
is overall spatially consistent, with only slightly faster warm-
ing at the mouth of the Bay (Hinson et al., 2022). The spatial
variability seen in this work implies that, while the largest
contribution to MHW increase may be long-term warming,
there are still additional characteristics, or causes, of MHW
that may be changing over time. A more detailed investiga-
tion into the dynamical drivers of MHW will be needed to
identify why there is a lack of spatial variability in long-term
warming but spatial variability inMHWfrequency increases.

Global MHW work has found that large-scale atmo-
spheric pressure anomalies are a driver for MHW in the
mid and high latitudes (Holbrook et al., 2019). Tassone et
al. (2022) looked at estuarine MHW in particular, finding
that in the Chesapeake Bay atmospheric and oceanic MHW
were co-occurring over 50% of the time, the second highest
co-occurrence of the 12 estuaries studied across the United
States. The Chesapeake Bay, however, had only the sixth
most number of events, highlighting the variability of MHW
behavior between estuarine environments. These findings
agree with those of Shunk et al. (2024), which found changes
in air-estuary heat flux to be the primary driver ofMHWonset
and decline. While atmospheric MHWs likely have a strong
influence in generating MHW in the Chesapeake Bay, Tas-
sone et al. (2022) also found that oceanic MHW tended to
lag atmospheric MHW in the Chesapeake Bay by only 1 day,
and highlighted that in some cases a relatively low intensity,
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low duration atmospheric MHW is enough to push an estu-
arine environment into an MHW when water temperatures
are already elevated.

Future analysis could focus on connecting spatial patterns
ofMHWcharacteristics identifiedhere toMHWmechanisms
of development and decline in the Chesapeake. Patterns of
evolution, such as the example in Fig. 10, hint at multiple
spatial patterns of evolution that could indicate differing
influences. For example, some MHW appeared to develop
starting in the river tributaries and expand to the main stem,
while others appeared to begin at the mouth of the Bay,
perhaps reflecting the relative influence of rivers and the
coastal ocean. Another avenue could be to pursue the spa-
tial patterns in rates of onset and decline. Past work in the
North Atlantic suggests that atmospheric mechanisms are
the most influential mechanism in MHW development while
ocean processes are themore influentialmechanism inMHW
decline (Schlegel et al., 2021). The rate of onset and decline
in the Chesapeake Bay showed the finest scale spatial struc-
ture of the metrics considered here, and differences in their
distributions could be related to mechanistic influence.

The Chesapeake Bay is the largest estuary in the continen-
tal US and the impacts of a warming climate have societal
and economic impacts. This work provides a spatial analysis
of MHW characteristics and trends in the Chesapeake. Val-
idation of satellite SST in the Bay allows future researchers
to more accurately understand results derived using SST in
the Bay. Spatial variation in MHW characteristics highlights
the importance of spatial structure in the Bay, highlights the
differences between river regions and main stem waters, and
provides initial insight into possible MHW mechanisms.
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