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ABSTRACT

Ekman transport, the horizontal mass transport associated with a wind stress applied on the ocean surface,

is modified by the vorticity of ocean currents, leading to what has been termed the nonlinear Ekman transport.

This article extends earlier work on this topic by deriving solutions for the nonlinear Ekman transport valid in

currents with curvature, such as a meandering jet or circular vortex, and for flows with the Rossby number

approaching unity. Tilting of the horizontal vorticity of the Ekman flow by the balanced currents modifies the

ocean response to surface forcing, such that, to leading order, winds parallel to the flow drive an Ekman

transport that depends only on the shear vorticity component of the vertical relative vorticity, whereas across-

flow winds drive transport dependent on the curvature vorticity. Curvature in the balanced flow field thus

leads to an Ekman transport that differs from previous formulations derived under the assumption of straight

flows. Notably, the theory also predicts a component of the transport aligned with the surface wind stress,

contrary to classic Ekman theory. In the case of the circular vortex, the solutions given here can be used to

calculate the vertical velocity to a higher order of accuracy than previous solutions, extending possible ap-

plications of the theory to strong balanced flows. The existence of oscillations, and the potential for resonance

and instability, in the Ekman flow at a curved jet are also demonstrated.

1. Introduction

The classic Ekman balance can be understood in

terms of vorticity dynamics as a balance between the

turbulent diffusion of horizontal vorticity and the tilting

of vertical planetary vorticity (Thomas and Rhines

2002). This balance leads to a horizontal mass transport

with a magnitude that is simply the ratio of the surface

wind stress and the Coriolis frequency, a powerful

framework for understanding the influence of surface

forcing on the ocean (Ekman 1905). Beyond the impli-

cations for horizontal flows and transport, spatial vari-

ability in the Ekman transport also generates vertical

velocities in the near-surface ocean (Ekman pumping),

which provides a boundary condition for the interior

flow, central to many theories of the general ocean cir-

culation (Sverdrup 1947; Stommel and Arons 1960;

Pedlosky 1979; and references therein).

The seminal works of Stern (1965) and Niiler (1969)

extended classic Ekman theory to include the tilting of

vertical relative vorticity, a modification often referred

to as ‘‘nonlinear’’ Ekman theory. Importantly, contrary

to classic Ekman theory, the inclusion of relative vor-

ticity modifies the Ekman pumping velocity such that a

horizontally uniform wind stress can still drive vertical

velocities (Stern 1965). Given the relatively large scale

of atmospheric motions [O(100) km], compared to the

typical scales of ocean dynamics [O(10) km], non-

linearity may be a particularly effective mechanism for

generating vertical velocities in the ocean. Conse-

quently, the effect of relative vorticity on Ekman

transport and pumping has been the subject of broad

interest, and results of both numerical and observational

work on this topic suggest that relative vorticity is likely

important to the Ekman balance across a range of dy-

namic processes and scales, modifying both the physics

and biology of the upper ocean (Mahadevan and

Tandon 2006; Mahadevan et al. 2008; Pedlosky 2008;

Gaube et al. 2015).

Despite the recognized importance of these dynamics,

existing expressions for the nonlinear Ekman transport

were derived under an assumption of straight flows (i.e.,

to leading order the velocity field is assumed invariant in

one direction; Niiler 1969; Thomas and Rhines 2002),

and hence they are not applicable to flows with curva-

ture. A more general expression for the vertical Ekman

pumping velocity was given by Stern (1965); however,
Corresponding author: Jacob O.Wenegrat, jwenegrat@stanford.

edu

MAY 2017 WENEGRAT AND THOMAS 1189

DOI: 10.1175/JPO-D-16-0239.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:jwenegrat@stanford.edu
mailto:jwenegrat@stanford.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


this solution, derived using scale analysis of the vorticity

equation, is accurate only to first order in Rossby num-

ber and cannot be used to determine the horizontal

Ekman transport components. These are important

limitations both because the effects of relative vorticity

on Ekman dynamics scale with the Rossby number and

because the horizontal Ekman transport is itself of in-

dependent interest. Knowledge of the horizontal Ekman

transport is essential for understanding a diverse range

of processes, including the frictional flux of potential

vorticity (Thomas and Ferrari 2008), Ekman buoyancy

flux (Thomas and Lee 2005; Pallàs-Sanz et al. 2010),

the energetics of wind-forced symmetric instability

(Thomas and Taylor 2010; D’Asaro et al. 2011), mode

water variability (Rintoul and England 2002), and the

flux of biogeochemical tracers in the surface mixed layer

(Franks and Walstad 1997; Williams and Follows 1998;

Mahadevan 2016).

In this article, we therefore extend these earlier results

on nonlinear Ekman dynamics to provide expressions

for theEkman transport that are valid for balanced flows

with curvature and for flows with the Rossby number

approaching unity. In section 2, we first summarize

earlier theoretical contributions on nonlinear Ekman

theory and then derive the equations governing the

Ekman transport for an arbitrarily curving balanced

current. Analytical solutions for the horizontal transport

are found for the case of a circular vortex (section 3),

which allows the vertical Ekman pumping velocity to be

calculated to a higher order of accuracy than possible

with previous solutions. Approximate solutions, valid

for weakly nonlinear currents with arbitrary curvature,

are given in section 4. These approximate transport so-

lutions are shown to provide the correct expressions for

the horizontal transport components associated with the

vertical Ekman pumping velocity derived by Stern

(1965). Finally, the potential for oscillations, resonance,

and growing instabilities in the nonlinear Ekman flow

are discussed in section 5.

2. Theory

a. Prior formulations

It is worthwhile to begin with a brief review of impor-

tant related work on Ekman dynamics in balanced flows

with significant relative vorticity. This problem was first

considered by Stern (1965), motivated by understanding

the effects of a uniform wind stress on a balanced vortex

flow. There are two velocity scales for the problem: one

associated with the balanced flow U and the other with

the Ekman flow, Ue [ to/(rofhe), where to is a scale for

the wind stress, ro is the density of seawater, f is the

Coriolis frequency, and he is the Ekman depth. Stern

(1965) considered flows where,

«
e
� 1 and « � 1, (1)

where «e 5 Ue/fL is the Ekman Rossby number,

« 5 U/fL is the balanced Rossby number, and L is a

characteristic horizontal length scale. Through scale

analysis of the vorticity equation, Stern found that, to

O(«), the Ekman pumping velocity is given by

w
STERN

’= � t3 ẑ

r
o
( f 1 z)

, (2)

where t is the surface wind stress vector, and z 5 ›y/›x2
›u/›y is the vertical component of the relative vorticity,

with u and y as the zonal and meridional velocity com-

ponents of the balanced flow, respectively. This solution is

notable both for its simplicity and its applicability to flows

of any geometry. It is important, however, to emphasize

that Stern’s result is strictly for the Ekman pumping ve-

locity, and, despite occasional misinterpretation in the

literature, it is not generally correct to assume that the

horizontal transport,MSTERN, is given by

M
STERN

6¼ t3 ẑ

r
o
( f 1 z)

. (3)

Rather, the solution forwe, in terms of the divergence of a

vector field, only constrains the horizontal transport up

to a solenoidal vector field. The correct Ekman transport

associatedwith Stern’s solution can therefore bewritten as

M
STERN

’
t3 ẑ

r
o
( f 1 z)

1=3A , (4)

where A is a vector potential that is not determined in

Stern’s analysis.

An alternate approach was taken by Niiler (1969),

who, interested in applications in the Gulf Stream,

solved for the horizontal Ekman transport at a straight

jet. The resulting solutions are accurate to a higher order

in « than Stern (1965), and only the nonlinear Ekman

self-advection terms in the momentum equations are

neglected. The conditions on the validity of Niiler’s so-

lution can thus be given as

«
e
� 1 and « , 1, (5)

for a balanced flow that is invariant in one horizontal

direction. We note that the condition « , 1 was not

explicitly discussed by Niiler (1969) but is a conse-

quence of the steady-state assumption, which requires

that f( f 1 z) . 0 in order to maintain inertial stability
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(Holton 2004, p. 205). Given this, Niiler’s solution for the

horizontal Ekman transport generated by a uniform wind

stress over a jet oriented in the north–south direction is

M
STERN

’

�
t
y

r( f 1 ›y/›x)
,2

t
x

rf

�
. (6)

It is evident that, on an f plane, the divergence of (6)

gives an Ekman pumping velocity consistent with (2).

These earlier contributions thus provide an expres-

sion for the vertical Ekman pumping velocity, accurate to

O(«), and solutions for the horizontal Ekman transport,

valid only for straight flows. The solutions given here

extend these earlier results by allowing for the calculation

of vertical velocities, which are accurate to a higher order

in «, and by providing expressions for the horizontal

Ekman transport valid in balanced flows with curvature.

b. Derivation in balanced natural coordinates

Consider a steady current, with a balanced velocity u.

The total horizontal flow can be written as u5 u1 ue,

where ue is the wind-forced Ekman component, ignoring

the time dependence and other sources of frictional flow

(Wenegrat and McPhaden 2016a,b). It is further as-

sumed that the balanced flow is either barotropic or the

Ekman layer is sufficiently thin so as to allow the bal-

anced flow to be approximated as barotropic (i.e., he� h,

where h is the depth scale of the balanced flow).

We are interested in finding solutions for the Ekman

flow in the presence of a steady, spatially uniform, wind

stress. The variables can thus be nondimensionalized

as follows: u5U u0, (ue, ye, we)5Ue[u
0
e, y

0
e, (he/L)w

0
e],

(tx, ty)5 to(t
0
x, t

0
y), x5Lx0, y5Ly0, z5 hez

0, where

primes denote nondimensional variables. Using these

scalings, the balanced flow is assumed to satisfy

«u0 � =u0 1 ẑ3 u0 52=p0 , (7)

where 2=p0 is the nondimensionalized pressure gradi-

ent force. Equation (7) admits a range of balanced flows,

including flows in cyclogeostrophic balance, relevant for

considering vortex flows, as in section 3. The non-

dimensionalized equations governing the horizontal

Ekman flow can then be written in vector form as

«u0
e � =u0 1 «

dU
e

U
e

u0 � =u0
e 1 «

e

dU
e

U
e

u0
e � =u0

e 1 ẑ3 u0
e 5

›t0

›z0
,

(8)

where the gradient in Ekman flow is scaled as =ue ;
dUe/L. For a spatially uniformwind stress dUe/Ue; « (Stern

1965; Klein and Hua 1988); hence, the second and third

terms on the left-hand side appear at O(«2) and O(«e«),

respectively.

In this article, we consider the same limit as Niiler

(1969):

«
e
� 1 and «, 1, (9)

but without restriction on the flow geometry, such that

only the third term on the left-hand side of (8), repre-

senting self-advection by the Ekman flow, is neglected.

Considering a typical midlatitude Ekman flow, where

Ue; 0.05m s21 (using to; 0.1Nm22, he; 20m, and f5
1 3 1024 s21), it can be seen that for L . ;5 km the

condition of «e � 1 will be satisfied. In the case that the

balanced Rossby number is also small (« � 1) solutions

found using (9) are asymptotically equivalent to the

limiting case considered by Stern (1965), as discussed in

section 4. However, many important oceanic flows have

«; 1, including western boundary currents, flows at low

latitude, and submesoscale currents and vortices, and

hence will violate the assumptions of Stern (1965). The

criteria of (9) are therefore of wider applicability than

(1), and the utility of this limit is demonstrated in com-

parison with a full numerical model in section 3.

To proceed, it is useful to switch to a balanced natural

coordinate system (e.g., Holton 2004, his section 3.2).

Parameterizing the position of a streamline of the bal-

anced flow by a coordinate s, it is possible to define a

coordinate system such that ŝ is the unit tangent vector

in the local streamwise direction, n̂ is the spanwise unit

vector normal to the local streamwise direction (defined

positive to the left of the balanced flow), and ẑ is the

standard unit vector in the vertical (Fig. 1). The total

velocity can then be written as

u5 (u1 u
e
)ŝ1 y

e
n̂1w

e
ẑ , (10)

where u[ juj and subscript e denotes the Ekman com-

ponents projected on the (s, n, z) coordinate system.

Further details of this coordinate system are discussed in

FIG. 1. Schematic of the balanced natural coordinate system. The

heavy black line denotes a streamline of u. Red lines denote ex-

amples of the locally tangential (ŝ) and normal (n̂) basis vectors,

and the vertical dimension (ẑ) is directed out of the page. An ex-

ample osculating circle for a point along the streamline is shown,

along with the local radius of curvature R (note that for this ex-

ample,R, 0). An example angle between the streamline and the x̂

direction is also shown, denoted as u.
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the appendix. For simplicity we also assume that u

is invariant in the streamwise direction, such that

›u/›s5 0.

In this coordinate system, after dropping primes for

simplicity, the relevant equations governing the Ekman

flow reduce to1

«u
›y

e

›s
1 (11 «2V)u

e
5
›t

n

›z
, and (11)

«u
›u

e

›s
2 (11 «z)y

e
5

›t
s

›z
, (12)

where V[ uk is the angular velocity, z[2›u/›n1V
is the relative vorticity, (ts, tn)5 (t � ŝ, t � n̂), and

k[ (›ŝ/›s) � n̂5 1/R with R as the radius of the local

osculating circle, defined as a positive value (negative)

when streamlines curve to the left (right) of the local

balanced flow (Fig. 1). We also note that the relative

vorticity consists of two terms: the shear vorticity

2›u/›n and the curvature vorticity V (Bleck 1991).

The Ekman transport,

(M
s
,M

n
)5

�ð
u
e
dz,

ð
y
e
dz

�
, (13)

can be found by vertically integrating (11) and (12),

which results in two coupled ordinary differential

equations in the along-flow coordinate:

«u
›M

n

›s
1 (11 «2V)M

s
5 t

n
, and (14)

«u
›M

s

›s
2 (11 «z)M

n
5 t

s
. (15)

For arbitrary flow curvature, k is a function of s, and

hence the coupled ODEs will have nonconstant co-

efficients, and solutions can be found numerically.

However, there are two additional cases that admit an-

alytical solutions that give further insight into the dy-

namics: a circular vortex and a weakly nonlinear jet.

3. Circular vortex

a. Analytical solutions

In the case where the balanced flow is circular (k is

constant), solutions exist for (14) and (15). It is useful to

rewrite the governing equations in polar coordinates,

defined by an azimuthal angle u and radial direction r,

defined positive outwards. This transformation is

straightforward, noting that ›s 5 r›u, where r is the

vortex radius, and n̂52r̂ if the azimuthal velocity is

positive (cyclonic flow) or n̂5 r̂ if the azimuthal velocity

is negative (anticyclonic flow). Polar coordinate coun-

terparts to (14) and (15) are thus given by

«V
›M

r

›u
2 (11 «2V)M

u
5 t

r
, and (16)

«V
›M

u

›u
1 (11 «z)M

r
5 t

u
, (17)

where Mu is the tangential transport, Mr is the radial

transport, and z[ (1/r)›(ru)/›r. These equations, and

the results of this section, can be contrasted to Wu and

Blumen (1982), who treat the case of an atmospheric

vortex under the geostrophic momentum approxima-

tion, ignoring advection of the ageostrophic flow. As-

suming the wind stress is purely zonal, that is,

tu 5 2sinu, and tr 5 cosu, the Ekman transport for the

circular vortex is given by

M
r
52

(11 «3V)

[(11 «2V)(11 «z)2 «2V2]
sinu and (18)

M
u
52

[11 «(V1 z)]

[(11 «2V)(11 «z)2 «2V2]
cosu , (19)

which in Cartesian coordinate components is

M
x
5 «

(z2 2V)

[(11 «2V)(11 «z)2 «2V2]
sinu cosu, (20)

and

M
y
52

(11 «V1 «2V sin2u1 «z cos2u)

[(11 «2V)(11 «z)2 «2V2]
. (21)

Note that except in the special case of a vortex in solid

body rotation (where z 5 2V), there can be a nonzero

component of the Ekman transport in the direction of

the zonal wind stress, so that contrary to classical Ekman

theory the Ekman transport is not purely perpendicular

to the wind. The Ekman pumping velocity, we, accurate

to higher order in « than (2), can be found by taking the

horizontal divergence of (20) and (21).

In the limit of the small Rossby number «2 � 1, (18)–

(21) become

M
r
’2[12 «(z2V)] sinu , (22)

M
u
’2(12 «V) cosu , (23)

M
x
’ «(z2 2V) sinu cosu, and (24)

M
y
’2f12 «[(z2V) sin2u1V cos2u]g . (25)

1 Note that for a wind stress that is uniform everywhere, in

the balanced-natural coordinate system ›(t � ŝ)/›s5k(t � n̂), and
›(t � n̂)/›s52k(t � ŝ). Hence, dUe/Ue ; 1, and we therefore do not

include these additional scaling factors, except where necessary for

clarity.
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The above solutions fully determine the Ekman trans-

port and hence can be used to give an equation for the

unknown vector potential A in (4), which nondimen-

sionally can be shown to be A0 5 «u0 cosuẑ.
For a straight current (i.e., without curvature) ori-

ented parallel to the wind, with Rossby number «0 and

nondimensional vertical vorticity z0, Thomas and

Rhines (2002) showed that for small «0 the magnitude of

the nondimensional Ekman transport is

jM
0
j’ 12 «

0
z
0
. (26)

Evaluating (25) where the wind is parallel to the flow

gives

jM
y
j’ 12 «(z2V) at u56p/2 (27)

which in comparison with (26) shows that the two ex-

pressions differ by a term proportional to the angular ve-

locity of the vortex. This termexactly cancels the curvature

vorticity, showing that to leading order the curved non-

linear Ekman balance for a wind aligned with the vortex

flow is affected only by the shear vorticity z 2 V rather

than the total flow vorticity z. Consequently, if one were to

use (26) to calculate the Ekman transport in a circular

vortex, the resulting transport would be overestimated in

an anticyclone and underestimated in a cyclone. Where

the wind is perpendicular to the flow, (25) becomes

jM
y
j’ 12 «V at u5 0 or p , (28)

highlighting how the Ekman transport only involves the

curvature vorticity in these sectors of the vortex. The

physical explanation for the dependence of the Ekman

transport on the shear and curvature vorticity for the two

wind alignments is illustrated inFig. 2 anddescribed below.

The physics can be understood in terms of the vortex

dynamics of the Ekman flow, which is governed by the

vorticity equation for a steady flow with a barotropic

pressure gradient and friction:

05v
a
� =u1=3F , (29)

whereva 5=3 u1 f ẑ is the absolute vorticity that can be

tilted and stretched via the first term in (29), and F is the

frictional force that generates vorticity by exerting a torque

on the fluid. Considering only themeridional component of

(29) and simplifying using the scaling given by (9) gives

2
›y

e

›z

›y

›x|fflfflfflfflffl{zfflfflfflfflffl}
HTILT

1
›u

e

›z

›y

›y|fflfflffl{zfflfflffl}
STRETCH

1 (f 1 z)
›y

e

›z|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
VTILT

’2
›Fx

›z
. (30)

In the classical Ekman vorticity balance the frictional

torque is exactly cancelled by the tilting of the vertical

component of the absolute vorticity VTILT (e.g.,

Fig. 2a, VTILT) and tilting and stretching of vorticity in

the horizontal direction is neglected. This is not justified

for a current with curvature. The vertical shear of the

Ekman flow results in a horizontal component of the

vorticity that runs parallel to the zonal wind stress

jDOWN 5 2›ye/›z. Where the wind is aligned with the

balanced flow, the curved current tilts jDOWN at a rate

HTILT5 jDOWN›y/›x (e.g., Fig. 2b, HTILT), canceling

the term in VTILT associated with the curvature vor-

ticity. Here, y(y)5 0, and the vortex stretching is zero.

As a result, the Ekman transport at this location in the

vortex [(27)] depends only on the shear vorticity. Where

the winds are perpendicular to the vortex flow, it is the

horizontal shear rather than the curvature of the bal-

anced flow that tilts jDOWN and partially cancels VTILT

(e.g., Fig. 2c; HTILT). At these locations y is at its

maximum, or minimum, value, and hence again

STRETCH 5 0. Consequently, the Ekman transport

(28) varies only with the curvature vorticity for winds

normal to the flow.

b. Example vortices

An illustration of the effect the above has on the pat-

terns of Ekman transport, and pumping, in a circular

vortex is shown in Fig. 3. The eddy structure is consistent

with a Gaussian sea surface height perturbation, with

parameters chosen such that U ; 0.16ms21, R 5 75km,

f 5 7.27 3 1025 s21, and « ; 0.03, consistent with the

observed global-mean properties of midlatitude meso-

scale eddies (Gaube et al. 2015). For a uniform zonal

wind stress, the zonal transport develops a quadrupole

pattern, emphasizing that the nonlinear Ekman transport

is not strictly perpendicular to the wind stress. The me-

ridional transport converges (diverges) on the north

(south) side of the cyclonic vortex, with the pattern re-

versed for the vortex with anticyclonic flow and with

slight differences in structure between the two cases.

These patterns in Ekman transport lead to a dipole of

vertical velocity across a vortex, with vertical velocity

magnitudes enhanced (reduced) at O(«2) in the cyclonic

(anticyclonic) case relative to the solution of Stern (1965).

The theory also suggests that the nonlinear Ekman

transport, and pumping, will be sensitive to the partic-

ular velocity structure of the vortex, contrary to solu-

tions that depend only on z. An example of this is shown

in Fig. 4 for an anticyclonic submesoscale vortex. The

balanced velocity is assumed to be in cyclogeostrophic

balance, with parameters such that the maximum bal-

anced velocity is ;0.25m s21, R 5 12km, f 5 1024 s21,

to 5 0.1Nm22, and « ; 0.2 (McWilliams 1985). The

change in the velocity structure of the vortex by the

centrifugal acceleration term in the cyclogeostrophic

MAY 2017 WENEGRAT AND THOMAS 1193



balance leads to different distribution of shear and

curvature vorticity across the eddy than for the example

mesoscale eddy shown in Fig. 3. Through (18) and (19)

this leads to changes in both horizontal transport com-

ponents, an example of which is the enhancement of the

meridional transport on both the upwind and downwind

sides of the vortex core (Fig. 4b). This changes the ver-

tical velocity field, including shifting the location of

maximum Ekman pumping velocities in toward the

vortex center (Fig. 4c), which is not captured by (2)

(Fig. 4d).

To provide further validation of the theory, we run the

MITgcm (Marshall et al. 1997) in a doubly periodic

domain of 300-m depth (Dx 5 Dy 5 2.5 km, Dz 5 3m),

with no vertical stratification, and a uniform vertical

viscosity of n 5 1022m2 s21. The model is initialized

with a positive Gaussian sea surface height perturbation

and an anticyclonic barotropic balanced velocity field,

with parameters representative of a midlatitude

mesoscale eddy, as given above for Fig. 3. A uniform

zonal surface wind stress is increased slowly in time, to

minimize transients, reaching a maximum value of

to 5 0.1 Nm22. Ageostrophic velocity compo-

nents are calculated from the model output as ue(z)5
u(z) 2 u(z 5 2300m) and averaged over the last five

inertial periods of the model integration. The Ekman

Rossby number, calculated using the maximum

modeled ageostrophic velocity, is thus «e ; 0.018.

Model results confirm the above theoretical analysis,

as shown in Fig. 5. Specifically, the theory given here

correctly predicts the patterns of horizontal transport,

including the quadrupole pattern aligned with the sur-

face wind stress. Vertical velocity calculated from the

divergence of (20) and (21) also more accurately re-

produces the modeled vertical velocity field than (2).

It is notable that the theory captures the numerical so-

lution well given that for these parameters, «/«e ; 2,

suggesting the potential relative importance of the

FIG. 2. Schematic of the vorticity dynamics of the Ekman transport at a circular vortex forced by a uniform wind

stress in the positive x direction (t, green vectors). (a) The Ekman spiral (blue vectors) has vorticity in the

downwind (jDOWN 5 2›ye/›z) and crosswind (jCROSS 5 ›ue/›z) directions. In the classical nonlinear Ekman

vorticity balance, the frictional input of vorticity by the wind is balanced by the tilting of the vertical component of

the balanced flow’s absolute vorticity f1 z by the Ekman shear VTILT. (b) However, in a curved current, tilting of

the vorticity of the Ekman flow jDOWN in the horizontal by the balanced flow HTILT modifies the vorticity dy-

namics. The balanced flow’s curvature vorticity is responsible for the tilting of jDOWN where the wind stress aligns

with the balanced flow. (c)Where thewind is perpendicular to the current it is the shear vorticity that tilts jDOWN. In

both cases, HTILT tends to oppose VTILT, and consequently the Ekman transport varies inversely with the shear

and curvature vorticity in the two regions, respectively.
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FIG. 3. Ekman transports and vertical velocities for a circular vortex forced by a westerly wind stress. The bal-

anced eddy velocity has radial structure as shown in the top row (see legend), chosen to be consistent with

a Gaussian sea surface height profile with length scale R 5 75 km. From the second row down to the bottom, the

rows show zonal transportMx, meridional transportMy, vertical velocitywe, and the difference betweenwe and the

vertical velocity calculated using (2)w0. Color scales are normalized as indicated in the row labels, and length scales

are normalized by the eddy length scale R. Dashed lines indicate radial positions of 1R and 2R for each vortex, and

parameter values are discussed in section 3b.
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nonlinear Ekman self-advection terms in (8), which are

neglected in the theory considered here.

4. Flow with arbitrary curvature

In this section, we consider an approximate solution to

(14) and (15) to demonstrate that the results of section 3

extend to flows of other geometries. These approximate

solutions are shown to give the appropriate horizontal

transports for use with (2). Examples of the Ekman

pumping field over a meandering jet are then calculated

numerically, demonstrating the importance of properly

accounting for curvature effects.

a. Approximate solutions for « � 1

To form an approximate solution to (14) and (15),

note that the first terms on the left-hand side represent

the O(«) streamwise advection of the ageostrophic flow

by the balanced flow. If it is assumed that the balanced

Rossby number is sufficiently small («� 1), it is possible

to find approximate analytical solutions that retain the

advection of the O(1) ageostrophic flow but ignore

higher-order advective terms, an assumption of weak

nonlinearity. To do this, note that (14) and (15) can be

written as

M
n
’2t

s
1O(«), and (31)

M
s
’ t

n
1O(«) . (32)

Retaining only terms of O(«) gives

2«u
›t

s

›s
1 (11 «2V)M

s
’ t

n
, and (33)

FIG. 4. Ekman transports and vertical velocities for an anticyclonic submesoscale circular vortex, forced by

a uniform westerly wind stress. (a) Zonal transport Mx, (b) meridional transport My, (c) vertical velocity we, and

(d) the difference between we and the vertical velocity calculated using (2) w0. Color scales are normalized as

indicated in the plot titles, using a definition of the Rossby number based on the extreme value of the relative

vorticity, «;max(jzj)/f ’ 0.6. Dashed lines indicate radial positions of 1R and 2R for each vortex, withR5 12 km,

as discussed in section 3b.
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«u
›t

n

›s
2 (11 «z)M

n
’ t

s
. (34)

Hence, the approximate solutions for the Ekman

transport with arbitrary curvature can be written as

M
s
’ (12 «V)t

n
, and (35)

M
n
’2[12 «(z2V)]t

s
. (36)

These transport relationships also remain valid for

spatially varying winds if the wind stress magnitude

varies over a length scale Lt, such that L/Lt # «, a

requirement that will frequently be satisfied for typical

ocean and atmosphere conditions. It should also be

noted that the transformation to balanced natural co-

ordinates is not Galilean invariant (Viúdez and Haney

1996), and in particular the decomposition of the total

vorticity (which is Galilean invariant) into the shear and

curvature vorticity components depends on the geom-

etry and magnitude of the balanced flow. However,

writing the resulting Ekman transport in terms of the

shear and curvature vorticity provides a compact way to

represent the transport for a variety of flow geometries.

FIG. 5. Results from a full primitive equation numerical model, with parameters consistent with Fig. 3, as dis-

cussed in section 3b. (a) Modeled zonal Ekman transport. (b) Modeled meridional Ekman transport. (c) Modeled

vertical Ekman pumping velocity. (d) Difference between vertical velocities from the numerical model,wNUM
e , and

those derived using the solution of Stern (1965) [(2)]. (e) As in (d), but for the vertical velocities calculated as the

horizontal divergence of the Ekman transport, with components (20) and (21). Values in each plot are normalized

as indicated in the titles. The center of the vortex in (e) is blanked due to spurious numerical errors associated with

the finite grid discretization.
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To convert to Cartesian coordinates, define

u[ cos21(ŝ � x̂), the angle that the ŝ vector makes with

the zonal (Fig. 1). Then, assuming for simplicity that the

wind stress is purely zonal, ts 5 cosu and tn 5 2sinu,
such that

M
x
’2«(z2 2V) sinu cosu, and (37)

M
y
’2f12 «[(z2V) cos2u1V sin2u]g . (38)

Equations (35)–(38) are the generalized equivalents

of (22)–(25) for a weakly nonlinear flow with arbitrary

curvature. Hence, the modifications of the Ekman

transport due to the arbitrary flow curvature, and the

physical mechanisms involved, are the same as those

discussed above in relation to the circular vortex. No-

tably, as was the case for the circular vortex, but contrary

to classical linear Ekman theory, the nonlinear Ekman

transport again has a component parallel to the wind

stress: (Ms, Mn) � (ts, tn)’ «(z2 2V)tstn.

The Ekman pumping velocity can be found by taking

the horizontal divergence

w
e
5

›M
s

›s
1

›M
n

›n
2M

n
k , (39)

and using (35) and (36), which gives

w
e
’ « sinu

›z

›s
1 « cosu

›z

›n
5 «

›z

›y
, (40)

which is asymptotically equivalent to (2). These ap-

proximate solutions thus extend the result of Stern

(1965) by providing the correct expressions for the

horizontal Ekman transport components (4), which, in

contrast to Niiler (1969), are valid in balanced flows with

curvature.

b. Numerical solutions for a meandering jet

To further illustrate the effects of curving flows on

Ekman dynamics, we calculate numerical solutions for

we at a velocity jet experiencing increasing amplitude

sinusoidal meanders,2 with a fixedGaussian across-front

velocity profile, as shown in Fig. 6. We note that the

governing equations (14) and (15) support an oscillatory

mode that arises in the homogeneous solution to the

equations (section 5); therefore, to suppress these os-

cillations and emphasize the particular solution, we

add a small linear damping 20.1f(Mn, Ms) to the right-

hand side of (14) and (15), respectively. We then solve

the coupled equations using a Runge–Kutta method,

with a Dirichlet boundary condition ofMs,n5 0 at s5 0.

Initially, at s 5 0, the balanced flow is purely zonal, and

there is no wind stress applied. As s increases, wind

stress is increased to generate the Ekman transport, and

farther downstream, the amplitude of the frontal me-

anders is increased. This solution method is directly

analogous to how similar problems are often solved in

the time domain; however, here the equations are in-

tegrated in the s coordinate.

The calculated vertical velocity fields display many of

the same characteristics discussed in relation to the cir-

cular vortex, with we changing signs on either side of the

jet core and intensification of we near the crests of the

FIG. 6. Vertical Ekman velocities at a jet with increasing am-

plitude sinusoidal meanders (as discussed in section 4), with nor-

malizedmeander amplitudes labeled in each plot. The cross-frontal

velocity structure is shown by the dashed black line in the top

panel, and the solid black lines indicate the position of the jet ve-

locity core (where the velocity is equal to umax) as well as e
21umax.

Length scales are nondimensionalized by the alongfront meander

wavelength (120 km), chosen to be consistent with a jet being dis-

torted by midlatitude eddies of Rossby radius ;30 km. Vertical

velocities are nondimensionalized by «to
ffiffiffi
2

p
/(rfL), where L 5

10 km is the across-front length scale, f 5 1024 s21, and umax 5
0.5m s21, such that « 5 0.5. In all cases the wind stress is

purely zonal.

2 To simultaneously satisfy the conditions of nondivergent

balanced flow, and ›u/›s5 0, streamlines must not be diffluent,

and hence must maintain a constant offset distance, a. For a

given parameterized curve y 5 f(x), the position of an offset

curve, (xo, yo), can be found using xo 5 x2ay0/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 y02

p
and

yo 5 y1a/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 y02

p
, where primes indicate differentiation with

respect to the x direction. Here we refer to the shape of a meander

by the shape of the base curve, y 5 f(x).
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meanders whereV is most negative. These solutions can

be compared to the vertical velocities calculated using

(2) (Fig. 7), showing that the vertical velocities are less

strongly dependent on meander phase when O(«2) cur-

vature effects are accounted for. Of additional note are

the high-wavenumber features that develop as the me-

ander amplitude increases; these are associated with

oscillations in the Ekman transport, which is the subject

of the following section.

5. Oscillations, resonance, and instability

The above solutions, which are the principal results of

this article, represent the forced, that is, particular,

components of the general solutions to (14) and (15).

However, it is worth briefly considering the homogenous

component of the solutions to demonstrate the existence

of oscillations and potential for resonance and in-

stabilities in the Ekman flow that arise due to advection

along a curving trajectory.

The homogenous portion of the equation gov-

erning the spanwise Ekman flow [(12)] can be writ-

ten as

›2y
e

›s2
2

2«

11 «2V

›V

›s

›y
e

›s
1

(11 «z)(11 «2V)

«2u2
y
e
5 0, (41)

which is the equation for a harmonic oscillator with

spatially varying coefficients. Thus,F2[ (11 «z)(11 «2V)

defines the squared frequency of what can be in-

terpreted as Lagrangian inertial oscillations,3 which ap-

pear in the advected Ekman flow as elliptical oscillations

with the along-flow wavenumber of F/u. Changes in the

wind stress in the moving frame as a fluid parcel is ad-

vected by a curving balanced flow can therefore excite

oscillations in the ageostrophic flow, analogous to how

temporal changes in wind stress excite inertial oscilla-

tions. An alternate physical explanation for this can be

seen by considering the Lagrangian equations of motion,

where, in the presence of a surface wind stress, fluid

parcels will be transported across isolines of balanced

flow, leading to accelerations due to the unbalanced

component of the pressure gradient force.

An example of the generation of free Lagrangian in-

ertial oscillations is shown in Fig. 8 for a balanced flow

that follows a Gaussian meander, solved as discussed in

section 4, but without the additional damping terms. For

simplicity the wind stress is taken to be purely zonal.

Large-amplitude oscillations are apparent in the wake of

the Gaussian meander, the dynamics of which can be

interpreted in terms of the vertical relative vorticity of

the Ekman flow ze 5 ẑ � =3 ue, which evolves in the

alongfront direction such that

«
dU

e

U
e

u
›z

e

›s|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
ADV

5 (11 «z)
›w

e

›z|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
STRETCH

2 «u
e

›z

›s
2 «y

e

›z

›n|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
GRAD

1 ẑ � =3
›t

›z|fflfflfflfflfflffl{zfflfflfflfflfflffl}
FORCE

. (42)

From left to right, the terms in (42) represent the

alongfront advection of ageostrophic vorticity by the

balanced flow (ADV), stretching of the absolute back-

ground vorticity by the Ekman flow (STRETCH), ad-

vection of the gradient in background vorticity by the

Ekman flow (GRAD) (similar to the b term in vorticity

budgets due to the meridional gradient of f ), and the

curl of the turbulent Reynolds stress (FORCE) (which

for a uniform wind field is zero). The leading-order

Ekman velocity field is irrotational for a uniform wind

stress, and hence dUe/Ue ; «, and the ADV term on the

left-hand side appears at O(«2), as in Stern (1965).

Upstream of the meander, the Ekman transport is ir-

rotational, and (42) is a balance betweenEkman advection

of the gradient in the shear vorticity, and the stretching of

FIG. 7. (top) Normalized Ekman vertical velocity fcwe 5
we[«to

ffiffiffi
2

p
/(rfL)]21g from the numerical solutions discussed in

section 4. (middle) Normalized Ekman pumping vertical velocity from

(2) fdwST 5wSTERN[«to
ffiffiffi
2

p
/(rfL)]21g. (bottom) Normalized difference

between the two solutions fŵ0 5 (we 2wSTERN)[«
2to/(fR)]

21, where

R5 59km is the minimum radius of curvature for the sinusoidal base

curveg. The case shown corresponds to the third panel (Â5 0:05) of

Fig. 6, with parameters as discussed in the caption of that figure.

3 The term F2 is also sometimes termed the absolute centrifugal

stability (e.g., Smyth and McWilliams 1998).
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the absolute vorticity by the Ekman vertical velocities. As

the flow enters the meander, ageostrophic vorticity is en-

hanced by the GRAD term, principally through the me-

ridional advection of the gradient in curvature vorticity.

Downstream of the meander, the vorticity budget consists

of along-flow oscillations in the advection and stretching

of vorticity, which characterizes the undamped free

Lagrangian inertial oscillations. This can be contrasted

with a classic inertial oscillation, which has no associated

signal in vorticity. We also note that the amplitude of the

oscillations in the ageostrophic vorticity grow secularly in

the streamwise coordinate via growth in the meridional

wavenumber of the Lagrangian inertial oscillations (which

can be approximated as ;su21›z/›n), similar to how

spatial gradients in the background vorticity field lead to

secular growth in time for the meridional wavenumber of

inertial oscillations (van Meurs 1998).

If the path of the balanced flow varies periodically, the

curvature vorticity, and hence the coefficient F2 in (41),

will be periodic. This allows for the possibility of both

external resonance with the wind stress, which is oscilla-

tory in the Lagrangian frame, and growing instabilities

due to parametric resonance (Grimshaw 1993). A full

analysis of resonance and instability for the nonlinear

Ekman transport problem should relax both the steady-

state and small Ekman Rossby number («e � 1) as-

sumptions utilized here and hence is beyond the scope of

the present work. However, we note that for a sinusoi-

dally meandering jet, in the limit of small meander aspect

ratio (A/l, 1, whereA is themeander amplitude and l is

the meander wavelength) and weak nonlinearity («� 1),

(41) can be approximated as a Mathieu equation, the

stability characteristics of which have beenwidely studied

(e.g., Landau and Lifshitz 1960). From this it can be an-

ticipated that growing instabilities will be found for

streamwise wavelength ls such that ls ’ np/m, where

m5 f /u is the approximate natural wavenumber of (41)

and n 5 1, 2, 3, . . . (van der Pol and Strutt 1928). The

Floquet multipliers of (41) were also calculated numeri-

cally and found to confirm that growing instabilities are

possible when the frontal aspect ratio is sufficiently large

and an integer number of natural wavelengths fit within

twice the streamwise meander wavelength. Importantly,

the energy source for parametric oscillations is the bal-

anced flow, and hence parametric oscillations and in-

stabilities represent a mechanism that can extract energy

from the balanced flow and drive ageostrophic mass

transports, independent of the local wind stress.

As the oscillatory terms in (41) and (42) are O(«2),

these effects are most likely to be significant in strong

balanced flows. However, the natural wavelength of the

oscillations is a function of u, which will vary across a jet

when ›u/›n 6¼ 0, and it can therefore be expected that the

conditions for resonance or instability will be satisfied at

specific cross-jet positions for many ocean flows. These

oscillations can also exist in a periodic domain, such as a

circular vortex, if the domain length is an integer multiple

of the natural wavelength ln 5 2pu/F The ratio of the

natural wavelength to a typical eddy circumference is

given by ln/(2pR) ; U/fR 5 «; hence, for geophysical

flows, Lagrangian inertial oscillations may arise even

when periodic boundary conditions are imposed on (41).

Both forced and parametric resonance will give rise to

growing oscillations, which could invalidate the assump-

tion used here of small Ekman Rossby number («e � 1),

and possible feedbacks between the Ekman flow and the

balanced flow will be the subject of future work.

6. Conclusions

In this article, we derived the governing equations for

Ekman flow in the limit of weak ageostrophic flow and

FIG. 8. (top) Ekman transport (as indicated by stick vectors)

along the core of a Gaussian velocity jet that follows a Gaussian

meander in meridional position (as indicated by solid line).

Length is normalized by the approximate natural wavelength

la 5 2p/m5 2pu/f . (middle) Terms in the Ekman vorticity budget,

taken as the vertical integral of (42), normalized by heuf /L, where

he 5 20m and L 5 0.3ln is the cross-front scale of the velocity jet.

(bottom) Cumulative alongfront integrals of the terms shown

above, normalized by heuf . Wind stress is uniform in the zonal

direction.
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strong balanced flow. Exact analytical solutions for the

Ekman transport in a circular vortex are provided and

can be used to calculate the vertical Ekman pumping

velocity to a higher order of accuracy in « than possible

with previous formulations. Approximate solutions for

the Ekman transport for flows with small Rossby num-

ber, but arbitrary geometry, are also given. These solu-

tions consist of both divergent and solenoidal

components and are shown to be appropriate for use

with the Ekman pumping solution of Stern (1965).

Both the exact transport solutions for the circular

vortex and the generalized approximate solutions differ

from prior formulations derived under the assumption

of straight fronts (Niiler 1969; Thomas and Rhines

2002). These differences arise physically from the bal-

anced flow tilting, in the horizontal plane, the horizontal

vorticity associated with the Ekman vertical shear. To

leading order, for a wind aligned with the balanced flow,

this has the effect of cancelling the tilting of the curva-

ture vorticity. This leads to an Ekman balance that is

between the turbulent diffusion of horizontal vorticity

and the tilting of planetary vorticity plus the vertical

component of the shear vorticity rather than the total

vorticity. Conversely, for a wind aligned across the bal-

anced flow, the Ekman transport depends to leading

order on the curvature vorticity, with no contribution

from the shear vorticity.

The effects of curvature on Ekman dynamics will

depend on the geometry and strength of the balanced

flow, and the direction of the wind stress relative to the

currents. For a wind aligned with (across) the balanced

flow, differences between the transport solutions given

here and prior formulations using the total vorticity will

scale as U/fR (U/fL), where R is the radius of curvature,

and L is the spanwise length scale. For many mesoscale

eddies and jets these effects can thus be expected to be

of similar order as the total relative vorticity (Liu and

Rossby 1993; Shearman et al. 2000; Chelton et al. 2011).

The effect of retaining terms of higher order in « on the

accuracy of the calculated Ekman pumping velocity can

be seen by noting that the nonlinear component of the

Ekman pumping velocity is itself proportional to «.

Hence, including terms of O(«2) in the solution leads to

an O(«) relative improvement in accuracy. For the

submesoscale vortex considered in section 3b, retaining

terms of O(«2) leads to an approximately 30% increase

in accuracy, equivalent to vertical velocities of

;4mday21. Identifying the effect of curved flow on the

Ekman transport and Ekman pumping velocity should

therefore be a priority of future observational and

numerical work.

In some of the flow configurations considered here,

the curvature vorticity changes following the balanced

flow, while the shear vorticity is assumed to be uniform

in the streamwise direction. In reality there is likely to be

exchange along the flow between the shear and curva-

ture vorticity (Chew 1974; Viúdez and Haney 1997),

which, along with streamwise variations in the magni-

tude of the balanced flow, could give rise to systematic

patterns in Ekman transport along a meandering cur-

rent. Similarly, the oscillations and growing instabilities

discussed in section 5 may also lead to Ekman velocities

that eventually violate the initial assumption of small

Ekman Rossby number «e, particularly when time de-

pendence is included in the problem formulation. Fu-

ture work will consider the effect of more realistic flow

configurations and feedbacks from the Ekman transport

on the evolution of the balanced flow.
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APPENDIX

Notes on the Balanced Natural Coordinate System

In this appendix, we note several useful properties and

relationships for the balanced natural coordinate system.

Generally, the definition of (̂s, n̂, ẑ) basis vectors follow-

ing curved streamlines formally defines a moving frame

rather than a true coordinate system. In this case, de-

rivatives should be understood as directional derivatives,

which can be evaluated as projections of the local ŝ and n̂

basis vectors on a Cartesian gradient operator, as in

Viúdez and Haney (1996). However, the barotropic,

nondivergent, balanced flow we consider here is complex

lamellar [u � (=3 u)5 0], and hence the streamline basis

vectors define a true coordinate system (Finnigan 1983;

Finnigan et al. 1990). Given this, we can define differential

operators directly in terms of the (s, n, z) coordinates. As

such, we define the gradient of a scalar x as

=x[ ŝ
›x

›s
1 n̂

›x

›n
1 ẑ

›x

›z
. (A1)

In the balanced natural coordinate system, care has to

be taken to properly account for streamline curvature

and, in more general balanced flows than we consider

here, the effects of diffluent streamlines. Following the

notation given in Kusse and Westwig (2006, their
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appendix F), the divergence of a vector V can thus be

denoted as

= �V5 bgj � ›

›xj
(Vibg

i
) , (A2)

where indices follow standard tensor notation, ĝ are the

basis vectors, ›/›x j is the jth component of the gradient

operator, the carat notation indicates unit vectors, and

V i is the ith component of the vector V. It can also be

noted that the last term on the right-hand side defines

the covariant derivative. Evaluating this for the problem

considered here gives

= �V5
›V

s

›s
1

›V
n

›n
1V

s

›u
›n

2V
n

›u
›s

1
›V

z

›z
, (A3)

where subscripts denote the component of the vector in

each coordinate direction, and u is the angle the ŝ basis

vector makes with the x direction, as discussed in section

4. Likewise, the curl operator can be defined (Kusse and

Westwig 2006) as

=3V5 bgj ›

›xj
3 (Vibg

i
) . (A4)

Or, for the vertical component of vorticity, which we

consider in section 5,

ẑ � (=3V)5
›V

n

›s
2

›V
s

›n
1V

s
k . (A5)

Finally, we note that in this coordinate system mixed

derivatives do not commute, which can be seen from

evaluating the identity =3 (=x)5 0, and in particular

we utilize the relationship (Bell and Keyser 1993)

›

›n

›x

›s
5

›

›s

›x

›n
1

›x

›s

›u
›s

1
›x

›n

›u
›n

. (A6)

Additional discussion of the natural coordinate system

can be found in Bell and Keyser (1993), including that

›ŝ

›g
5 n̂

›u
›g

,
›n̂

›g
52ŝ

›u
›g

, (A7)

for g equal to s or n.
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