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ABSTRACT

Flow along isobaths of a sloping lower boundary generates an across-isobath Ekman transport in the

bottom boundary layer. When this Ekman transport is down the slope it causes convective mixing—much

like a downfront wind in the surface boundary layer—destroying stratification and potential vorticity. In this

manuscript we show how this can lead to the development of a forced centrifugal or symmetric instability

regime, where the potential vorticity flux generated by friction along the boundary is balanced by sub-

mesoscale instabilities that return the boundary layer potential vorticity to zero. This balance provides a

strong constraint on the boundary layer evolution, which we use to develop a theory that explains the

evolution of the boundary layer thickness, the rate at which the instabilities extract energy from the

geostrophic flow field, and the magnitude and vertical structure of the dissipation. Finally, we show using

theory and a high-resolution numerical model how the presence of centrifugal or symmetric instabilities

alters the time-dependent Ekman adjustment of the boundary layer, delaying Ekman buoyancy arrest and

enhancing the total energy removed from the balanced flow field. Submesoscale instabilities of the bottom

boundary layer may therefore play an important, largely overlooked, role in the energetics of flow over

topography in the ocean.

1. Introduction

The ocean bottom boundary layer (BBL) over sloping

topography often has a structure reminiscent of a surface

mixed layer front, with isopycnals that slope downward

from the interior toward the topography (Fig. 1). One way

that this frontal BBL structure can develop is when inte-

rior flow along isobaths of a sloping lower boundary forces

an across-isobath bottom Ekman transport (MacCready

and Rhines 1991). This Ekman transport follows the slop-

ing lower boundary, which crosses isopycnals whenever the

interior is stratified, thereby generating an advective flux of

buoyancy. When the transport is toward deeper water

(downslope), the advective buoyancy flux brings buoyant

water down along the bottom, leading to convective

mixing, which on the slope acts to increase the horizontal

buoyancy gradient while reducing the vertical gradient.

The case of downslope Ekman transport is therefore

closely analogous to the case of a downfront wind stress

(Thomas 2005; Thomas and Ferrari 2008), where a wind

aligned with a frontal jet drives an Ekman transport that

is directed from the dense side to the light side of a

surface ocean front. This Ekman buoyancy flux has been

shown to modify the surface boundary layer in a wide

variety of ways, one of the most consequential of which

is through the generation of symmetric instability (SI), a

fast-growing submesoscale instability associated with

2D overturning circulations in the cross-front plane (Stone

1966; Haine and Marshall 1998). A partial list of the as-

pects of the surface boundary layer evolution which SI

is known to affect includes the rates of: mixed layer

deepening, entrainment, restratification, kinetic energy

dissipation, and buoyancy mixing (Taylor and Ferrari

2010, hereinafter TF10;D’Asaro et al. 2011; Thomas et al.

2013, 2016).

Several lines of evidence point to the existence of

similar processes in the BBL, starting with theoretical

and modeling work by Allen and Newberger (1998),

who noted that when the BBL is in thermal wind balance

(the ‘‘arrested’’ Ekman layer; Garrett et al. 1993) it canCorresponding author: Jacob O. Wenegrat, wenegrat@umd.edu
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be unstable to growing symmetric modes, suggesting the

incompleteness of 1D theory. Using 2D simulations they

investigated the finite-amplitude behavior of SI, arguing

that instabilities are likely found both in response to

Ekman adjustment of the boundary layer to an interior

flow and in response to downwelling favorable surface

winds (Allen and Newberger 1996, 1998). More recent

idealized 3D numerical simulations of a tidal mixing

front (Brink and Cherian 2013), and dense shelf over-

flows (Yankovsky and Legg 2019), likewise indicate the

presence of both SI and baroclinic modes, consistent

with the predictions of Wenegrat et al. (2018). Finally,

perhaps the most compelling evidence currently available

comes from recent observations taken in the Southern

Ocean, which showed that downslope Ekman flows in the

deep ocean, generated by the Antarctic bottom water

flowing along steep topography, led to conditions condu-

cive to symmetric and centrifugal instabilities (CI; Naveira

Garabato et al. 2019). These conditions were also associ-

ated with enhanced turbulent dissipation rates (Naveira

Garabato et al. 2019), similar to observations of SI in the

surface boundary layer (D’Asaro et al. 2011).

The primary goal of this paper is therefore to examine

centrifugal and symmetric instability in the BBL in the

case where a steady interior flow over uniformly sloping

topography drives a downslope Ekman transport. We

focus on the time-dependent adjustment process and the

development of a ‘‘forced’’ regime where downslope

Ekman buoyancy fluxes maintain persistent SI/CI. The

similarity between downslope and across-front wind-

driven Ekman transports is used to adapt the insightful

derivations provided in TF10 for the surface boundary

layer to the case of a BBL over sloping topography. This

allows us to extend earlier work on this topic to provide a

theoretical framework that explains many aspects of the

BBL evolution in the presence of SI and CI, including

how the boundary layer height and stratification evolve,

the rate at which the instabilities extract energy from the

mean flow, and the magnitude and vertical structure of

the turbulent dissipation.

Themanuscript is organized as follows. In section 2 we

introduce the high-resolution numericalmodel we use to

test the theory, and provide a brief qualitative discussion

of the evolution of two representative simulations. In

section 3 we develop the theory of the BBL evolution in

the presence of SI/CI, and test the predictions against

the numerical simulations. In section 4 we show how

SI/CI modifies the energetics of the BBL and provide

simple scalings for the turbulent dissipation that repro-

duce the numerical results. Finally, in section 5 we dis-

cuss how SI/CI modifies the classical 1D conception of

the Ekman adjustment of the BBL.

2. Numerical simulations

a. Numerical model configuration

To explore the role of instabilities during Ekman ad-

justment of the BBL we perform high-resolution nu-

merical simulations of a stratified flow oriented along

isobaths of a sloping bottom. The domain setup is ideal-

ized, assuming uniform topographic slope u, periodicity in

the along and across isobath directions, a steady baro-

tropic interior flow V‘, and uniform interior stratification

N2
‘ (Fig. 1). Our interest is in the SI/CI modes, hence we

only consider the case where the interior flow generates

downwelling in the bottomEkman layer (i.e.,V‘. 0 in the

Northern Hemisphere for the geometry shown in Fig. 1).

It is useful to work in a coordinate system rotated

to align with the sloping bottom (Fig. 1), where x is the

across-isobath (across-slope) direction, y is the along-

isobath (along-slope) direction, and z is the slope-

normal direction (defined such that the bottom is at

z5 0). When coordinates or variables are referenced in

the standard, nonrotated, coordinate system they will be

indicated using hat notation (i.e., ẑ is parallel to the di-

rection of gravitational acceleration). Separating the

total velocity and buoyancy fields into interior (denoted

with subscript ‘) and perturbation quantities (denoted

by lowercase variables), such that uT 5 (u, y 1 V‘, w)

FIG. 1. (a) Schematic of the numerical model domain, with initial

condition consisting of a uniformly stratified interior (with buoyancy

contours indicated by thin black lines) and barotropic interior

flow over a sloping lower boundary. (b) An example of the ad-

justment of the boundary layer toward thermal wind balance,

where downslope Ekman transport generates thermal wind shear

in the bottom boundary layer, reducing the near-bottom veloci-

ties. The rotated coordinate system is also shown, with standard

nonrotated coordinates denoted using the hat notation.
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and bT 5b1N2
‘(z cosu1 x sinu), the equations govern-

ing the perturbations are (Wenegrat et al. 2018)

›u

›t
1 u

T
� =u2 f cosuy52

1

r
o

›p

›x
1 b sinu1 n=2u , (1)

›y

›t
1 u

T
� =y2 f sinuw1 f cosuu52

1

r
o

›p

›y
1 n=2y , (2)

›w

›t
1 u

T
� =w1 f sinuy52

1

r
o

›p

›z
1b cosu1 n=2w , (3)

›b

›t
1 u

T
� =b1 uN2

‘ sinu1wN2
‘ cosu5 k=2b, and (4)

= � u5 0: (5)

Note that the use of periodic boundary conditions in

the across-slope (x) direction requires that the mean

across-slope buoyancy gradient remains fixed in time,

with magnitude N2
‘ sinu. This setup is therefore similar

to the ‘‘frontal-zone’’ configuration commonly used in

spectral simulations of surface boundary layer fronts,

where a fixed magnitude horizontal buoyancy gradient

is imposed (e.g., TF10; Thomas and Taylor 2010).

Importantly, however, in the BBL case both the mean

horizontal buoyancy gradient, and the mean vertical

vorticity, are free to evolve in time.

Bottom boundary conditions are given by

u5 0, y1V
‘
5 0, w5 0,

›b

›z
1N2

‘ cosu5 0, at

z5 0: (6)

These equations are solved numerically using the spec-

tral codeDedalus (Burns et al. 2020) in a 2D domain (x–z)

that is periodic in the across and along-isobath directions (x

and y), and bounded by rigid walls in the slope-normal

direction (z). The 2D domain allows for computationally

efficient exploration of the 2D SI/CI overturning instabil-

ities, but will suppress the emergence of 3D baroclinic

modes expected after a transient SI phase in cases with low

interior slope Burger number, S‘ 5 N‘u/f (Brink and

Cherian 2013; Wenegrat et al. 2018). In regions with large

slope Burger number topographic suppression of the baro-

clinic growth rates allows for persistent SI/CI even in 3D

simulations (Wenegrat et al. 2018).

In all simulations the effective resolution after de-

aliasing is Dx 5 1m and Dz 5 0.01 2 1.2m, with en-

hanced resolution near the lower and upper boundaries.

The domain size is 1 km in the across-slope (x) direction

and 200m in the slope-normal (z) direction, except

where larger domains were determined to be necessary

to fully resolve the instabilities and boundary layer evo-

lution (as indicated in Table 1). A sponge region with

Rayleigh damping of perturbations is applied in the upper

20m of the domain to reduce wave reflection (as in TF10).

A constant viscosity and diffusivity of n5 k5 1024m2 s21

are used, again consistent with TF10, giving a laminar

Ekman layer depth of de 5
ffiffiffiffiffiffiffiffiffi
2n/f

p
5 1:4m. The near-wall

viscous sublayer is confirmed to be resolved with at least

2 grid pointswithin one viscouswall unit of the boundary at

all times (dn 5 n/u*, where u*5
ffiffiffiffiffiffiffiffiffiffiffiffijtj/ro

p
, and jtj is the

magnitude of the bottom stress).

b. Description of simulation evolution

The full set of simulations considered here span a wide

range of slope angles, interior stratification, and slope

Burger numbers (as listed in Table 1). It is, however,

useful to begin with a brief qualitative description of

several representative simulations. Figure 2 shows the

evolution of simulation SI-1, which has an initial slope

Burger number of S‘ 5 0.6, indicating a moderately

steep regime where symmetric instability is expected

(Wenegrat et al. 2018). The simulation begins with a

TABLE 1. Summary of numerical simulations. All simulations are run with f5 1024 s21, and an interior velocity ofV‘5 0.1m s21 except

as indicated by a * where an increased velocity of V‘ 5 0.2m s21 was used. Simulations that were dominated by convective instability are

indicated by the ** symbol (section 3c).

Name

Interior stratification

N2
‘ (s22) Slope angle u

Slope Burger number

S‘ 5 N‘u/f

Model configuration Lx 3 Lz,

run duration

1025 0.1 3.2 1 km 3 200m, 40 days

CI-1 1025 0.05 1.6 1 km 3 200m, 40 days

1026 0.1 1 1 km 3 300m, 30 days

SI-1 1025 0.02 0.6 1 km 3 200m, 40 days

* 1025 0.02 0.6 2 km 3 300m, 15 days

1026 0.06 0.6 1 km 3 200m, 15 days

5 3 1026 0.02 0.45 1 km 3 200m, 40 days

** 1026 0.01 0.1 1 km 3 200m, 40 days

** 1027 0.02 0.06 1 km 3 200m, 40 days

CONV-1** 1027 0.005 0.02 1 km 3 200m, 40 days
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barotropic interior flow along the slope (V‘), which

generates a downslope Ekman flow (u , 0) within ap-

proximately an inertial period in response to the associ-

ated along-slope bottom stress. This Ekman flow advects

buoyant water down the slope in a thin near boundary

Ekman layer, which generates convective mixing that

destroys stratification, producing a bottom boundary

layer which grows to ;50m thickness after 15 days.

The destruction of stratification by the downslope

Ekman transport is also associated with a boundary flux

of Ertel potential vorticity (PV; Benthuysen and Thomas

2012), defined as q5v �=bT, wherev is the total absolute

vorticity vector. This leads to a BBL characterized by fq,
0 (which can be seen in the first several days of the simu-

lation), stable vertical stratification, and f (f 1 ›y/›x̂). 0, a

state which is unstable to symmetric instability (Haine and

Marshall 1998; Thomas et al. 2013). In classic 1D theory, or

in a simulation where submesoscale instabilities were

not resolved, this evolution would continue, with con-

vective turbulence deepening the well-mixed boundary

layer until an arrested Ekman state was achieved, or

the flow relaminarized (MacCready and Rhines 1991,

1993; Ruan et al. 2019). Here, however, the state of

fq, 0 gives rise to rapidly growing symmetric instability

(Fig. 3), which reaches finite amplitude within several

days, and returns the boundary layer to q ’ 0 (Fig. 2).

Also evident in Fig. 3 are secondary Kelvin–Helmholtz

instabilities, generated by the sheared SI overturning

cells, which enhance the boundary layer dissipation

(section 4) (Taylor and Ferrari 2009). These conditions,

where an Ekman buoyancy flux pushes the boundary

layer toward fq , 0 and symmetric instabilities return

the boundary layer to the point of marginal stability, q’
0, is a regime known from the surface boundary layer

literature as ‘‘forced symmetric instability’’ (TF10;

Thomas and Taylor 2010; Thomas et al. 2013), newly

identified here as a feature of the BBL.

A useful diagnostic for determining the fastest grow-

ing instability type in each portion of the domain

comes from linear theory, developed in Thomas et al.

(2013). Assuming a flow that is in approximate geo-

strophic balance, an instability angle can be defined

as fRib
5 tan21(2j›b/›x̂j2/f 2N2), such that growing in-

stabilities will occur when fRib
is smaller than a critical

angle offc 5 tan21[2(f 1 ›yg/›x̂)/f ] (Thomas et al. 2013).

Symmetric modes dominate for 2908,fRib
,2458,

growing through vertical shear production, and when

2458,fRib
,fc mixed symmetric–centrifugal modes

grow via both lateral and vertical shear production.

When the stratification becomes unstable (N2 , 0,

FIG. 2. Overview of the evolution of simulation SI-1 (with parameters as given in Table 1).

From top to bottom the panels give the across-slope velocity (u), the total along-slope velocity

(yT5 y1V‘), the vertical buoyancy gradient (N
2), and the PV (q). All values are averaged in

the across-slope (x) direction, and normalized as indicated in each plot. The evolution of the

low PV layer depth H, as predicted by (27), is shown in the bottom panel in black.
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fRib
,2908), the fastest growing mode will either be a

gravitational instability or a mixed gravitational–

symmetric mode depending on the relative magnitude

of the vertical buoyancy production and shear production

(see Thomas et al. 2013, their appendix). To reduce noise

associated with calculating these quantities from the high-

resolution numerical model we first smooth the stratifica-

tion and buoyancy gradients to Dx ’ 14m and Dz ’ 3m

resolution (which are much smaller than the vertical and

horizontal scales of the instabilities themselves), and use

across-slope averaged profiles of the geostrophic vertical

relative vorticity to determine fc and the transition

between gravitational and mixed gravitational–symmetric

modes [see Eq. (41) of Thomas et al. 2013]. The resulting

estimate of fRib
for simulation SI-1 is shown in Fig. 4, with

the color scale indicating the primary instability type, il-

lustrating howmost of theBBL is dominated by symmetric

instability. Near the lower-boundary regions of gravita-

tional and mixed gravitational–symmetric instabil-

ities are evident, associated with the near-boundary

convective layer (section 3c). In the center of the do-

main buoyancy advection by the SI overturning cells

generates a plume of gravitationally unstable fluid

which extends toward the top of the boundary layer.

FIG. 3. Snapshot of the across-slope velocity field u (color scale) from day 12 of run SI-1. The banded velocity

structure is typical of symmetric instability, where the fastest growing mode is oriented along isopycnals (black

contours). The height of the low PV layerH (section 3b) and the convective layer h (section 3c) as determined from

the numerical solutions are indicated along the right ordinate by the large and small triangles, respectively.

FIG. 4. Cross-frontal section detailing the spatial distribution of the fastest growing

instability type predicted from linear theory for run SI-1 on day 12 (as in Fig. 3).

Parameter space is divided into mixed centrifugal–symmetric (CI-SI), symmetric (SI),

gravitational (GRAV), and mixed gravitational–symmetric (GRAV-SI) following the

balanced Richardson number criteria laid out in Thomas et al. (2013) (as discussed in

section 2b). Isopycnals are shown with black contours. All fields are averaged over a 4 h

period, and the height of the low PV layer H (section 3b) and the convective layer h

(section 3c) as determined from the numerical solutions are indicated along the right

ordinate by the large and small triangles, respectively.
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A similar evolution is evident in simulation CI-1,

which is configured with the same interior stratification,

but a steeper slope, such that the slope Burger number is

S‘ 5 1.6 (Table 1). Following the same basic evolution, a

downslope Ekman flow develops rapidly at the beginning

of the simulation, generating a growing BBL that is asso-

ciated with reduced stratification and low PV (Fig. 5).

Early in this run f (f 1 ›y/›x̂), 0, indicative of centrifugal

instability (Haine and Marshall 1998). Later, as the

boundary layer adjusts to q ’ 0 the flow becomes iner-

tially stable, but the instability continues to gain energy

primarily through lateral shear production (section 4), in

what can be considered as amixed SI/CImode (Wenegrat

et al. 2018).

Notable differences between the two runs include a

more rapid shutdown of the cross-slope flow, and a

faster growing boundary layer that remains more strat-

ified, in simulation CI-1 compared to SI-1. It will be

shown below that these results all follow directly as a

consequence of the increased slope angle, and hence

slope Burger number, of CI-1. As in SI-1, overturning

cells are evident in the cross-frontal snapshot of CI-1

(Fig. 6). These instabilities are of a mixed centrifugal–

symmetric type (Fig. 7), growing primarily through

energy extracted from the lateral shear of the geo-

strophic flow (section 4)—enhanced in CI-1 due to the

steeper slope angle, which allows the slope-normal shear

to project more efficiently on the horizontal—with

additional contributions from vertical shear produc-

tion. The finite amplitude CI thus acts similarly to the

SI modes, bringing the boundary layer PV back to zero

in what can be considered a forced centrifugal instability,

and it will be shown below that indeed the boundary layer

evolution is governed by the same essential dynamics, re-

gardless of whether the instabilities are predominantly of

the SI or CI type.

3. Theory of forced SI/CI in the BBL

To understand the evolution of the boundary layer

shown in Figs. 2–7 it is useful to take the mean of the

governing equations (1)–(4),

›hui
›t

2 f hyi5 hbiu2 ›hu0w0i
›z

1 n
›2hui
›z2

, (7)

›hyi
›t

1 f hui52
›hy0w0i
›z

1 n
›2hyi
›z2

, (8)

FIG. 5. As in Fig. 2, but for simulation CI-1 (with parameters as given in Table 1). From top

to bottom the panels give the across-slope velocity (u, note the reduced color scale from

Fig. 2), the total along-slope velocity (yT 5 y 1 V‘), the vertical buoyancy gradient (N
2), and

the PV (q). All values are averaged in the across-slope (x) direction, and normalized as in-

dicated in each plot. The evolution of the low PV layer depthH, as predicted by (27), is shown

in the bottom panel in black.
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f hyiu52
1

r
o

›hpi
›z

1 b2
›hw0w0i

›z
, and (9)

›hbi
›t

1N2
‘uhui52

›hw0b0i
›z

1 k
›2hbi
›z2

, (10)

where h�i denotes the average over the across-slope (x)

direction, and primes indicate departure from the av-

erage. Note that for notational simplicity here, and in

the remainder of the manuscript, we make the small-

angle approximation (cosu ’ 1, sinu ’ u), which is sat-

isfied by most oceanographically relevant slope angles.

Example profiles of the dominant terms in the across

and along-slope momentum budget for simulation SI-1

are shown in Fig. 8, showing how buoyancy perturba-

tions and momentum flux divergences are primarily

balanced at subinertial time scales by Coriolis acceler-

ations. The along-slope momentum balance is similar

to the turbulent Ekman balance found for the surface

boundary layer in TF10, and explains the vertical structure

of the cross-slope flow shown in Figs. 2 and 5, where

downslope Ekman flow in a thin near-boundary

layer sits below an across-slope secondary circula-

tion driven by the mixing of geostrophic momentum

(TF10; Wenegrat and McPhaden 2016).

In the following sections we show how the SI/CI

modes bringing the boundary layer to the state of mar-

ginal stability, where q ’ 0, can be used to constrain

many aspects of the boundary layer evolution. We em-

phasize that significant portions of this are an adaptation

of the work of TF10 to the slope, however, in the interest

of parsimony we will not explicitly note every connec-

tion with that work.

a. Potential vorticity

In the rotated coordinate system the mean PV can be

written as

hqi5 f
›hbi
›z

1 fN2
‘ 1

›hz0b0i
›z

2N2
‘u

›hyi
›z

, (11)

FIG. 6. As in Fig. 3, but for run CI-1 on day 12.

FIG. 7. Cross-frontal section detailing the spatial distribution of the fastest growing insta-

bility type predicted from linear theory for run CI-1 on day 12 (as in Fig. 6). See the caption of

Fig. 4 for definitions.
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where z 5 ›y/›x is the slope normal relative vorticity in

the 2D configuration considered here. The PV evolves

following

›hqi
›t

1
›hJzi
›z

5 0, (12)

where Jz is the slope-normal component of the PV flux,

J5 qu2vk=2b1=b
T
3 n=2u . (13)

Outside of thin viscous/diffusive layers near the bound-

ary, the PV evolution can be approximated by

›hqi
›t

1
›hq0w0i

›z
’ 0: (14)

Using (11) in (14) then gives

f
›

›t

›hbi
›z

1
›

›t

›hz0b0i
›z

2N2
‘u

›

›t

›hyi
›z

1
›hq0w0i

›z
’ 0: (15)

Integrating in the slope-normal direction,

f
›

›t
hbi1 ›

›t
hz0b0i2N2

‘u
›

›t
hyi1 hq0w0i ’ C(t) , (16)

where C is a constant of integration that depends

only on time. The perturbation quantities and PV flux

go to 0 above the BBL, hence it must be the case

that C(t) 5 0.

Using the mean buoyancy equation (10), the PV flux

can then be written as1

hq0w0i ’ N2
‘u

�
›hyi
›t

1 f hui
�
1 f

›hw0b0i
›z

2
›hz0b0i
›t

. (17)

FIG. 8. Dominant terms in the momentum equations for simulation SI-1, averaged in the

across-slope direction (x) and over days 11–13. (left) The across-slope momentum budget (7)

is largely in a geostrophic balance between buoyancy perturbations and Coriolis accelera-

tions, with some additional contribution from the turbulent momentum flux divergence.

(right) The along-slope momentum budget (8) is in approximate Ekman balance, with

Coriolis accelerations balancing the turbulent momentum flux divergence. The height of the

low PV layerH (large triangle) and the convective layer h (small triangle) are indicated along

the right ordinate in each plot.

1 Throughout we ignore the molecular diffusive fluxes of

buoyancy as they tend to be small relative to other terms.

Formally this can be posed (see appendix) as the requirement

that fk(11S2
‘)/u*

2u � 1, i.e., the Thorpe transport (Thorpe 1987) is

small relative to the Ekman transport, such that advective and re-

solved turbulent fluxes dominate the diffusive flux. This is generally

true, with the exception being the late time evolution of the large

slope Burger number cases, which undergo significant Ekman arrest

(section 5), such that u* / 0 and diffusive fluxes can become im-

portant. We consider this as somewhat artificial, both due to the

enhanced diffusivity used here and the long integration times.

Regardless, the cumulative errors due to this approximation remain

small in these few cases, hence diffusive terms can be safely ignored.
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For subinertial motions the last term on the right-hand

side is small relative to the first two terms (following the

scaling analysis given in TF10, their appendix), and

hence it can be neglected,

hq0w0i ’ N2
‘u

�
›hyi
›t

1 f hui
�
1 f

›hw0b0i
›z

. (18)

Substituting for the term in parentheses using the

mean along-slope momentum balance (8) gives

hq0w0i ’ 2N2
‘u

›hy0w0i
›z

1 f
›hw0b0i

›z
. (19)

For the PV to remain steady in the BBL, the flux must

be nondivergent over the BBL [see Eq. (14)], therefore

2N2
‘uhy0w0i1 f hw0b0i is at most a linear function of the

slope-normal distance (Fig. 9).

b. Scaling for H, the height of the low PV layer

Once the instabilities have reached finite amplitude in

the numerical simulations the boundary layer stratifica-

tion does not evolve significantly in time, that is, ›b/›t is

independent of z. Thus, integrating the mean buoyancy

equation (10) over the boundary layer height H(t) from

the bottom (again ignoring the small diffusive fluxes of

buoyancy),

H
›hbi
›t

’ 2hw0b0i
z5H

2N2
‘u

ðH
0

hui dz . (20)

For the case of a sloping bottom the depth-integrated

buoyancy can only be in steady state when the cross-

slope advection exactly balances the buoyancy flux di-

vergence (Thorpe 1987). As the buoyancy perturbation

enters the momentum balance, through (7), this implies

that there is not necessarily a steady-state solution for

any arbitrary Ekman transport, unlike in the surface

boundary layer. However, by integrating (7), (8), and

(10) in the slope-normal direction, it is possible to com-

bine the across and along slope momentum equations to

give an approximate equation for the across-slope trans-

port [see appendix and Brink and Lentz (2010)]2

FIG. 9. Terms from the slope-normal PV flux equation (19) averaged horizontally (x) and

over days 11–13 for simulation SI-1. (a)Away from the bottom the sumof the two flux terms is

an approximately linear function of H, as required for hq0w0i to be nondivergent over the

boundary layer (section 3a). The scaling for the flux magnitude, (11S2
‘)EBFs, is also shown

(dashed black line). (b) The same flux terms (as defined in the legend) decomposed by across-

slope wavelength, where long wavelength motions (lx . 100m; solid lines) are associated

with the instability overturning cells, and small-scale motions (lx , 100m; dashed lines) are

associated with turbulence. The height of the low PV layer H (large triangle) and the con-

vective layer h (small triangle) are indicated along the right ordinate in each plot.

2We ignore entrainment fluxes of momentum at z5 H for clarity,

as they do not contribute significantly in the numerical simulations.
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ðH
0

hui dz ’ 2
1

f (11 S2
‘)

�htyi
r
o

1
u

f
hw0b0i

z5H

�
, (21)

where ty5 ron›y/›zjz50 is the along-slope bottom stress.

The cross-slope transport is therefore given by the BBL

Ekman transport, modified to account for the reduction

of the Ekman flow by buoyancy forces in the across-

slope momentum budget (Brink and Lentz 2010).

Using (21) in (20) gives

H
›hbi
›t

’ (11a)EBF
s
, (22)

where we have introduced the slope Ekman buoyancy flux,

EBF
s
5

htyi
r
o
f

N2
‘u

11 S2
‘

, (23)

and where a52hw0biz5H(11 S2
‘)

21
EBF21

s is an en-

trainment factor accounting for the turbulent buoyancy

flux at z 5 H. Practically this term is only important in

the simulations dominated by convection, and can oth-

erwise be ignored (section 3c).

The rate of change of buoyancy can be related to the

PV flux outside of the near-boundary diffusive layer by

using (10), (18), and noting that ›hyi/›t ’ 2f21u›hbi/›t
(see appendix), such that,

hq0w0i ’ 2f (11 S2
‘)

›hbi
›t

. (24)

Then, defining H(t) as the location where the PV

flux vanishes, hJziz5H 5 0, and integrating (12) verti-

cally gives

›

›t

ðH(t)

0

hqi dz2 ›H

›t
hqi

z5H
’ 2(11a)(11 S2

‘)
fEBF

s

H
,

(25)

where we have used (22) and (24) to write hJziz50 ’
2(11a)(11 S2

‘)fEBFs/H, as the PV flux is assumed

constant through the BBL. The rate of change of the

integrated boundary layer PV will be small when con-

vective mixing or symmetric/centrifugal instabilities cause

hqi ’ 0 through most of the BBL. Setting hqiz5H 5 fN2
‘,

reflecting the entrainment of interior PV, then gives an

equation for the rate of change of the thickness of the low

PV layer,

H
›H

›t
’ (11a)(11 S2

‘)
EBF

s

N2
‘

. (26)

This can be further simplified as

H
›H

›t
’ (11a)

htyiu
r
o
f
, (27)

showing how the time evolution of the boundary

layer thickness differs from the expectation for upright

convection—growing faster by a factor of 11S2
‘

(Deardorff et al. 1969)—and depends only weakly on

the interior stratification and slope Burger number

(through the entrainment fluxes and the bottom stress as

discussed in section 5). The accuracy of the boundary

layer height predicted by integrating (27) can be seen by

comparing the thick black line in the bottom panels of

Figs. 2 and 5 to the depth of the simulated low PV layer.

c. Scaling for h, the height of the convective layer

During SI/CI the boundary layer divides into two re-

gions. Near the lower boundary the stratification re-

mains low and turbulent buoyancy fluxes act to increase

the eddy kinetic energy—in what is termed the con-

vective layer (TF10)—above which the lies a stratified

region where instabilities are active. In some conditions

the convective layer can fill the majority of the boundary

layer, allowing upright convection to persist even in

conditions that otherwise appear conducive to SI/CI,

and it is therefore useful to determine a diagnostic

equation for the height of the convective layer h(t).

In the surface boundary layer the convective layer

depth is generally defined as the location where the total

vertical buoyancy flux is zero (TF10), however, in our

simulations we find that this definition does not usefully

partition the boundary layer into regions with distinct

dynamics. The reason for this can be seen clearly by

decomposing the slope-normal buoyancy flux by across-

slope wavenumber (Fig. 9b). Slope-normal buoyancy

fluxes with across-slope wavelengths lx . 100m are

associated with the SI/CI overturning cells, and are pos-

itive through a significant portion of the lower boundary

layer, whereas fluxes associated with smaller-scale tur-

bulent motions (lx, 100m) decay rapidly away from the

boundary. The convective layer depth, as commonly de-

fined, is therefore largely determined by the overturning

cells of the instability themselves in these simulations, and

hence does not discriminate regions of the boundary layer

where SI/CI is active or not. Detailed exploration of why

the instability cells are slightly inclined from isopycnal

surfaces, and hence generate buoyancy fluxes is beyond

the scope of the present work (see related work by

Grisouard 2018). However, we note that the regions of

positive buoyancy fluxes by SI/CI are largely compen-

sated by negative buoyancy fluxes in the upper portion of

the boundary layer, such that shear production still

dominates the total instability energetics (section 4).

Given this, we take an alternate definition of the con-

vective layer height as the location at which the small-scale

turbulent slope-normal buoyancy fluxes equal 0. To do this

we decompose the total slope-normal buoyancy fluxes into

1802 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 50

D
ow

nloaded from
 http://journals.am

etsoc.org/jpo/article-pdf/50/6/1793/4960864/jpod200027.pdf by guest on 22 June 2020



contributions from SI/CI and turbulent motions, denoted

as hw0b0iI and hw0b0iT, respectively. Then, integrating the

mean buoyancy equation (10) to the height of the con-

vective layer, h—where hw0b0iT 5 0 by definition—and

again ignoring small diffusive fluxes, gives

ðh
0

›hbi
›t

dz ’ 2N2
‘u

ðh
0

hui dz2 hw0b0iIz5h . (28)

Recalling that the rate of change of buoyancy is in-

dependent of z in the boundary layer, (22) implies

h

H
(11a)EBF

s
’ 2N2

‘u

ðh
0

hui dz2 hw0b0iIz5h . (29)

The vertical integral of the cross-slope velocity can be

rewritten as (see appendix)

ðh
0

hui dz ’ 2
1

f (11 S2
‘)

�
hy0w0ij

z5h
1

htyi
r
o

1
u

f
hw0b0iIz5h

�
,

(30)

that is, the cross-slope transport over the layer is pro-

portional to the divergence of the along-slope momen-

tum flux plus a contribution from the buoyancy flux

divergence (and where we have ignored small diffusive

fluxes of momentum at z 5 h). Thus,

h

H
(11a)EBF

s
’ N2

‘u

f (11 S2
‘)

hy0w0ij
z5h

1EBF
s

2
1

11S2
‘

hw0b0iIz5h . (31)

Solving this equation directly for h using numerical

estimates3 of H, hy0w0iz5h, and hw0b0iIz5h (defined using

a cutoff wavelength of lx 5 100m) shows excellent

agreement with the true convective layer depth across

all simulations (r2 5 0.98).

To close this equation for diagnostic purposes it is nec-

essary to estimate the eddy momentum and buoyancy flux

terms. To do this we assume that the alongfront turbulent

velocity scale goes like the change in geostrophic velocity

over the convective layer y0 ; h›yg/›z, the buoyancy per-

turbation scales as the change in total buoyancy over the

convective layer b0 ; hN2, and the vertical velocity scales

with the convective velocity w0 ; (EBFsh)
1/3 (as in TF10).

The q ’ 0 condition provides a constraint on the pertur-

bation buoyancy gradient in the boundary layer, which un-

der the assumption of linear variation of buoyancy through

the boundary layer (see, e.g., Fig. 8), can be written fol-

lowing Allen and Newberger [1998, their Eq. (2.53)] as

›hbi
›z

’ 2
N2

‘

11 S2
‘

. (32)

Noting that the geometry of the problem gives ›hbi/›x̂5
2u›hbi/›z, the thermal wind shear can then be written as

›hygi/›ẑ ’ N2
‘u/f (11 S2

‘). Using these relationships and

scalings, the equation governing the convective layer

depth can be written

�
h

H

�4

2C3

 
u*2

Dy2g
cosg

!2�
12 (11a)

h

H

�3
5 0, (33)

where C is a constant with best estimate determined

from fitting the numerical simulations ofC5 7.9 (Fig. 10),

FIG. 10. Comparison of the convective layer depth h predicted

from (33) and the depth determined from the numerical simula-

tions hNUM. The squared correlation coefficient is shown in the plot

title. For the numerical simulations the height of the convective

layer is determined as the lowest height where hw0b0iT # 0, where

the overbar indicates averaging over one inertial period and tur-

bulent motions are defined as having a cross-slope wavelength of

lx , 100m. Instances where the bottom diffusive flux of perturbation

buoyancy kN2
‘ is of similar magnitude as the EBFs are excluded for

consistency with the assumptions of section 3 (see appendix).

3 As a practical matter the PV flux calculated from a numerical

model is often a noisy quantity, which can make directly deter-

mining the height of the low PV layer difficult. In the few places

necessary we instead take the simplifying approach of estimating

H from the numerical simulations as the height at which hqi5 0:5fN2
‘,

whichwe findprovides a reasonable estimate of where hq0w0i’ 0. This

definition differs slightly from that used in the derivation of (27), likely

due to diffusive fluxes at the top of the boundary layer not considered

in the theory. Alternate methods of estimatingH from the numerical

simulations were tested and found to only lead to minor quantitative

changes.
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g 5 cos21(ty/jtj) is the angle of the bottom stress relative

to the along-slope direction, and Dyg 5HN2u/f (11 S2
‘) is

the change in geostrophic velocity over the boundary layer

height. Aside from slight differences in the empirical co-

efficient, this equation is the same as for the convective

depth in the surface boundary layer in the case of down-

front winds and no surface buoyancy loss (TF10; Thomas

et al. 2013). Alternate definitions of the cutoff wavelength

lxwere tested and found to lead to onlyminor quantitative

changes in the best-fit coefficient.

The convective layer height is therefore controlled

by the term u*/Dyg, the ratio of the friction velocity to

the change in geostrophic velocity over the BBL. An

alternate expression of this utilizes the slope Monin–

Obukhov length (Ruan et al. 2019),

L
s
5

u*3

K EBF
s

, (34)

where K 5 0:4 is the von Kármán constant, such that

u*/Dyg ’K Ls/H (assumingg’ 0). Thus, whenLs/H� 1

the first term in (33) dominates, and the convective layer

depth goes to 0. When Ls/H � 1 only the second term in

(33) contributes, and the convective layer fills the bound-

ary layer outside an entrainment layer near the boundary

layer top, such that h ’ H/(1 1 a). An example of this

latter case is shown in Fig. 11 for simulation CONV-1,

where Ls/H � 1, and SI/CI are absent and the

boundary layer is instead characterized by gravita-

tional instability (Fig. 12).

Conditions of fq , 0 are therefore not indepen-

dently sufficient for SI/CI in the BBL, and it is addi-

tionally necessary that h/H � 1. This final criteria is

satisfied when the change in geostrophic velocity over

the boundary layer height is much larger than the

friction velocity (or equivalentlyLs/H� 1), similar to

the criteria for wind-forced SI in the surface bound-

ary layer (Thomas et al. 2013). However, unlike the

surface boundary layer case, in the BBL these two

quantities are not independent, as increasing Dyg acts
to decrease the bottom stress, discussed further in

section 5.

4. Energetics

In the slope-coordinate system the eddy kinetic en-

ergy (EKE) budget is

›hki
›t

5 hw0b0i1 hu0b0iu|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
VBP

2hy0w0i ›hyi
›z

2 hu0w0i ›hui
›z|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

SP

2
›

›z

�
hw0k0i1 hw0p0i2 n

›hki
›z

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TRANSPORT

2«|{z}
DISS

,

(35)

where k 5 (u02 1 y02 1 w02)/2 is the EKE, «5 nhs0i,js0i,ji is
the dissipation rate, and s0i,j 5 (›u0

i/›xj 1 ›u0
j/›xi)/2 is the

strain tensor. Terms in the budget are, from left to right,

the vertical buoyancy production (VBP, which involves

both slope-normal and across-slope fluxes), shear pro-

duction (SP), transport of EKE (TRANSPORT), and

dissipation of eddy kinetic energy (DISS). Note that the

slope-normal direction projects on both the horizontal

and vertical directions, hence the slope-normal shear

production term (SP) includes contributions from

both lateral shear production (LSP52hû0û0i � ›hûi/›x̂)
and vertical shear production (VSP52hû0ŵ0i � ›hûi/›ẑ)

FIG. 11. As in Fig. 3, but for run CONV-1 on day 12. In this simulation, whereLs/H� 1, SI/CI does not develop, and

convective turbulence keeps the boundary layer unstratified.
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components (recalling that the hat notation indicates terms

evaluated in the standard nonrotated frame, Fig. 1).

To further simplify the budget, the shear production

can be decomposed into geostrophic and ageostrophic

components. The governing equations for the mean shear

(assuming subinertial time scales, and dropping viscous

terms)4 are

2f
›hyi
›z

’ ›hbi
›z

u2
›2hu0w0i

›z2
, (36)

f
›hui
›z

’ 2
›2hy0w0i
›z2

. (37)

Using these, the SP can be written as

SP ’ 1

f

›

›z

�
2hy0w0i›hu

0w0i
›z

1 hu0w0i›hy
0w0i
›z

�

1
hy0w0i
f

›hbi
›z

u|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
GSPs

. (38)

The turbulent fluxes go to 0 at the boundary and in the

interior, hence the first term integrates to 0, leaving only

the final term involving the slope-normal perturbation

buoyancy gradient. Noting that ›yg/›z52f21u›b/›z, we

denote this as the slope geostrophic shear production

GSP
s
52hy0w0i

›hy
g
i

›z
. (39)

The portion of the shear production which contributes

to the vertically integrated EKE tendency thus reduces

to a single term, involving the slope-normal momentum

fluxes extracting energy from the slope-normal shear of

the geostrophic flow. The distinction between centrifu-

gal and symmetric modes—defined by their primary

energy source of lateral or vertical shear production,

respectively—can therefore be seen to be somewhat

artificial in the BBL, where instabilities will smoothly

transition between SI/CI modes, and will often involve

mixed symmetric–centrifugal modes with energy ex-

traction from both the vertical and horizontal shear of

the geostrophic flow. However, if desired the GSPs can

also be expressed in terms of standard vertical and lat-

eral shear production terms,

GSP
s
52hy0ŵ0i

›hy
g
i

›ẑ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
VGSP

2hy0û0i
›hy

g
i

›x̂|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
LGSP

. (40)

The slope geostrophic shear production is thus

similar to the energy source for SI in the surface

boundary layer (VGSP), but also includes the con-

tribution of energy extraction from the lateral geo-

strophic shear (LGSP).

The relative importance of these energy sources can

be estimated using the fact that the fastest growingmode

is aligned along isopycnals (Thomas et al. 2013), which

have slope ›z/›xjr ’2uS22
‘ when q ’ 0 (Allen and

Newberger 1998), the ratio of LGSP to VGSP will be

LGSP

VGSP
;2

�
›z

›x

����
r

�21

u ’ S2
‘ . (41)

FIG. 12. Cross-frontal section detailing the spatial distribution of the fastest growing in-

stability type predicted from linear theory for run CONV-1 on day 12 (as in Fig. 11). See the

caption of Fig. 4 for definitions.

4 Note that when considering the horizontal momentum equa-

tions the rate of change of buoyancy still influences the along-slope

momentum balance, and hence it is necessary to retain the rate of

change terms, as discussed in the appendix. However, here, where

we consider the equations governing the mean slope-normal shear,

the assumptions that momentum evolves on subinertial time scales

and that ›2hbi/›z›t ’ 0, together allow the rate of change terms to

be neglected.
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The same result can also be derived directly from the

definition of the PV, which, assuming that the flow is in

approximate geostrophic balance, can be written

q ’ fN2

�
11Ro

b
2

1

Ri
b

�
, (42)

where Rob 5 f21›yg/›x̂ and Rib 5N2(›yg/›ẑ)
22 are the

balanced Rossby and Richardson number, respectively.

The ratio of the last two terms in this equation (i.e.,

2Rob/Ri21
b 52RobRib) thus determines whether the

PV is vortically low (associated with CI), or baroclini-

cally low (associated with SI; Thomas 2008). Using (32),

this can be approximated by

2Ro
b
Ri

b
’ S2

‘ . (43)

Thus, both the energetics and PV indicate that

centrifugal-type instabilities are expected to occur

when the interior slope Burger number exceeds 1, and

symmetric-type instabilities will be found when S‘ , 1.

An example of this is shown in Fig. 13, where for simu-

lation CI-1 (S‘ . 1) lateral shear production dominates

outside the thin near-boundary convective layer, whereas

simulation SI-1 (S‘ , 1) is everywhere dominated by

vertical shear production.

Importantly, while the SI/CI modes grow via GSPs,

much of the total energy extracted from the geostrophic

flow via shear production is balanced directly by dissipa-

tion. An example of this is shown in Fig. 14 for simulation

SI-1, where the rate of change of EKE is a small residual

between the near compensation of shear production and

dissipation. It is therefore of interest to constrain the

magnitude and vertical structure of the combined EKE

production terms, as these set the dissipation rate on

the right-hand side of the boundary layer. In the surface

boundary layer these follow directly from the PV flux

equation (TF10; Thomas and Taylor 2010), however, in

the BBL case a few additional steps are necessary. First,

consider the eddy potential energy (EPE) equation, ig-

noring vertical transport terms for simplicity,

›

›t

 
hb02i
2N2

‘

!
52hw0b0i2 hu0b0iu|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

2VBP

2
hw0b0i
N2

‘

›hbi
›z|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

MPE2EPE

2
k

N2
‘

	
›b0

›z

›b0

›z



|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

DISSb

. (44)

The first term on the right-hand side is the negative of

the vertical buoyancy production term, representing the

loss of eddy potential energy to eddy kinetic energy, the

second term is the conversion between mean and eddy

potential energy (MPE–EPE), and the final term gives

the rate of irreversible mixing of buoyancy (DISSb).

The numerical simulations show that, when in the

forced-SI/CI regime, both the rate of change of EPE

and DISSb are small. Hence the EPE budget can be

approximated as

0 ’ 2hw0b0i2 hu0b0iu2 hw0b0i
N2

‘

›hbi
›z

. (45)

Using (32), this gives

hw0b0i
11 S2

‘

’ hw0b0i1 hu0b0iu|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
VBP

. (46)

Physically this states that in the limit where both the

rate of change and dissipation of EPE are small, con-

versions between eddy potential and kinetic energy are

balanced by conversions between mean and eddy poten-

tial energy. Finally, using (32) the GSPs can be expressed

as GSPs ’ 2hy0w0iN2
‘u/f (11 S2

‘), allowing the EKE

budget to be approximated as

›hki
›t

’ 1

11 S2
‘

�
hw0b0i2 hy0w0iN

2
‘u

f

�
2 « . (47)

From the PV flux equation (19) the first term on the

right-hand side of (47) is a linear function of z, with

maximum value given by EBFs (Fig. 9). In the case that

the rate of change of EKE is small, this implies that the

FIG. 13. Comparison of the true lateral shear production (LSP)

to the true vertical shear production (VSP), and total shear pro-

duction (SP) for run (left) CI-1 and (right) SI-1. Profiles are aver-

aged over days 4–6. In simulation CI-1, where S‘ . 1, LSP exceeds

VSP outside the convective layer, whereasVSP dominates the total

shear production everywhere for simulation SI-1 (S‘ , 1), con-

sistent with the expectation from (41) and (43). The height of the

low PV layer H (large triangle) and the convective layer h (small

triangle) for each simulation are indicated along the right ordinates.

1806 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 50

D
ow

nloaded from
 http://journals.am

etsoc.org/jpo/article-pdf/50/6/1793/4960864/jpod200027.pdf by guest on 22 June 2020



dissipation must also be a linear function of z, with mag-

nitude set by the slope Ekman buoyancy flux (Fig. 15),

«
SI
’

8<
:EBF

s

�
12

z

H

�
, if z#H

0, otherwise.

(48)

The vertically integrated dissipation from SI/CI in the

BBL will therefore go as (H/2)EBFs. A comparison of

the depth-integrated production terms, first term on the

right-hand side of (47), to the parameterized depth-

integrated dissipation is shown in Fig. 15c. The agree-

ment is excellent across all simulations, although the

dissipation is overestimated by approximately 10%,

likely due to production terms that go to zero near the

lower boundary more smoothly than predicted by the

piecewise approximation given by (48). A similar result

for SI in the surface boundary layer has proven useful in

explaining observations of enhanced turbulent dissipa-

tion at symmetrically unstable fronts (D’Asaro et al.

2011; Thomas et al. 2016), and for the development

FIG. 14. Cumulative energy budget over the first 15 days of simulation SI-1, formed by taking

the slope-normal integral of (35), and then integrating in time.

FIG. 15. Comparison between eddy kinetic energy production and dissipation. Slope-normal profiles of shear

production (SP), vertical buoyancy production (VBP), and dissipation (DISS) from simulations (a) CI-1 and (b) SI-1,

averaged over days 4–6. Terms are defined as in (35). Also shown is minus the EBFs (gray dash–dot line), and the

scaling for the dissipation (black dashed line) given in Eq. (48). (c) A comparison between the scaling for the depth-

integrated dissipation rate and the geostrophic shear production plus the buoyancy production across all simulations.

Note that here these terms are evaluated using the approximate form given by (47), i.e.,GSPs 52hy0w0iN2
‘u/f (11S2

‘)

and VBP5 hw0b0i/(11 S2
‘). The simulation with V‘ 5 0.2m s21 is off the scale shown on this plot, however, it also

closely follows the 1–1 line and is included in the squared correlation coefficient shown in the plot title.
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of parameterizations of unresolved SI turbulence

(Bachman et al. 2017).

5. Symmetric/centrifugal instability and Ekman
buoyancy arrest

Above it is shown that during the Ekman adjustment

process of the boundary layer the flow quickly becomes

unstable to SI/CI, which grow to finite amplitude and

begin to modify the dynamical evolution of the bound-

ary layer. It is therefore of interest to consider how the

presence of these instabilitiesmodifies the classic picture

of Ekman buoyancy arrest, where 1D theory predicts

that the development of thermal wind shear in the

BBL will eventually bring the along-slope bottom

velocity (and consequently the along-slope bottom

stress) to zero, shutting down the cross-slope Ekman

buoyancy flux (MacCready and Rhines 1991, 1993;

Brink and Lentz 2010). The most obvious modifica-

tion to the Ekman arrest process by SI/CI is through

the enhanced stratification of the boundary layer

necessary to bring the PV to the point of marginal

stability (q ’ 0). As noted by Allen and Newberger

(1998), this modifies the depth of the BBL necessary

to achieve full Ekman arrest,

H
a
5

V
‘
f (11 S2

‘)

N2
‘u

, (49)

that is, increasing the arrested BBL height by a factor

of 11 S2
‘ from the case of upright convection.5 The

significance of this will be discussed further below.

First, however, it is useful to note that another po-

tential mechanism by which SI/CI could modify Ekman

adjustment is through the convergence of along-front

momentum near the lower boundary associated with the

SI/CI overturning cells (see, e.g., Fig. 3). This conver-

gence of momentum could in principle act to accelerate

ageostrophic along-slope flows near the boundary,

which would help to maintain an along-slope bottom

stress, countering the Ekman arrest process. However,

investigation of the numerical simulations we per-

formed suggest this mechanism is not active. Instead,

the principal balance in the along-slope momentum

budget (8) is between the flux convergence terms and

the Coriolis acceleration, that is, the momentum flux

convergence drives a secondary circulation in the cross-

slope direction rather than accelerating an along-slope

flow (Fig. 8, consistent with the surface boundary layer

results of TF10).

This suggests that the Ekman buoyancy arrest process

persists even in the presence of finite amplitude SI/CI.

The time scale for the buoyancy arrest process is

T
E2SI/CI

5
V2

‘(11 S2
‘)

2

2N
‘
S3
‘u*

2
o

, (50)

where uo*5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffijtoj/ro

p
and to is the initial bottom stress,

before Ekman adjustment has begun. This time scale

follows directly from the derivation given in Brink and

Lentz [2010, their Eq. (26)], using a value of the crit-

ical Richardson number of Ric 5 11S2
‘ which, for flow

in approximate geostrophic balance, gives q 5 0 (Allen

and Newberger 1998). The ability of this time scale to

collapse the various numerical model results is striking

(Fig. 16). The SI/CI arrest process time scale can also be

compared to that for classic Ekman arrest where the

boundary layer is assumed to be well mixed (i.e., Ric5 0),

such that

FIG. 16. Evolution of the average along-slopebottomstress htyi for
all simulations (Table 1): (top) the evolution of the stress as a function

of time and (bottom) the stress evolutionwith time normalized by the

Ekman adjustment time scale, which collapses all simulations to a

single curve [similar to the results for 1D simulations shown in Brink

and Lentz (2010)]. Simulations with active SI/CI (circular markers)

are normalized using the time scale (50), and simulations where

convection dominates (diamondmarkers) are normalized using (51).

In both plots the stress is averaged over 12-h periods, and normalized

by the maximum value for each simulation.

5 The relaminarization height (Ruan et al. 2019) of the boundary

layer, which marks the point at which turbulence in the boundary

layer is suppressed by viscous effects, will similarly be increased

by a factor of 11S2
‘ by SI/CI. This can be seen by replacing

the approximate stress relation in Ruan et al. [2019, their

Eq. (13)] with ty/ro ’Cd[V‘ 2HN2
‘u/f (11S2

‘)]
2
to reflect the re-

duced geostrophic shear.
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T
E
5

V2
‘(11 S2

‘)

2N
‘
S3
‘u*

2
o

. (51)

SI/CI thus extends the arrest process by a factor of

11 S2
‘ via restratification of the boundary layer, which

reduces the strength of the thermal wind shear.

A detailed analysis of the energetics of Ekman ad-

justment of the BBL in the presence of SI/CI will be the

subject of a future manuscript, however, it is worth

briefly noting the effect that these processes may have

on the energetics of the general ocean circulation, where

bottom drag over topography is believed to be a key sink

of kinetic energy from the balanced flow field (Ferrari

andWunsch 2009; Sen et al. 2008; Arbic et al. 2009). The

combined energy loss from the geostrophic flow due to

bottom drag and the vertically integrated SI/CI dissi-

pation can be conceptualized as an effective dissipation

(cf. Thomas and Taylor 2010),

DISS
EFF

52tyy
g
j
z50

2 r
o

ð‘
0

«
SI
dz , (52)

which, using (48), and the definition of the change

in geostrophic velocity across the boundary layer,

Dyg 5HN2
‘u/f (11 S2

‘), can be written as

DISS
EFF

52ty
�
y
g
j
z50

1
1

2
Dy

g

�
. (53)

Considering the development of thermal wind shear

during the Ekman arrest process, which reduces the

bottom geostrophic velocity from the interior values

such that ygjz505V‘2Dyg, the effective dissipation can
also be written as, DISSEFF 5 2ty(V‘ 2 Dyg/2). Thus,
while the Ekman arrest process reduces the energy lost

to bottom drag on the geostrophic flow through the

development of thermal wind shear, the presence of

SI/CI offsets half of this reduction directly through en-

hanced dissipation of kinetic energy extracted from the

geostrophic flow either directly through GSPs or indi-

rectly through the release of available potential energy

(which in the Ekman arrest process is ultimately sourced

from the mean kinetic energy; Umlauf et al. 2015).

6. Summary and discussion

Recently there has been a renewed interest in the

dynamics of the BBL, motivated in part by the possibility

that recent advances in understanding submesoscale pro-

cesses at the ocean’s surface might also provide insight

into the physical processes at the bottom (McWilliams

2016;Wenegrat et al. 2018). In this manuscript we focused

on the case of an interior flow along isobaths of a sloping

lower boundary which generates a downslope Ekman

transport, as a BBL counterpart to the well-studied

case of downfront surface wind stress. We show that

there exists a state of forced centrifugal and sym-

metric instability in the BBL, which behaves much

like the state of forced symmetric instability in the

surface boundary layer (TF10; Thomas and Taylor 2010).

Importantly, the fact that the BBL evolves to reach the

state of marginal stability to SI/CI (i.e., q’ 0) provides a

strong constraint on the evolution, with major conse-

quences including:

1) The slope Ekman buoyancy flux, EBFs (23), controls

both the rate of change of buoyancy in the boundary

layer (22), and the slope-normal flux of PV (19). This

allows the governing equation for the height of the

low PV layer to be expressed as a simple ordinary

differential equation involving the bottom stress,

slope angle, and Coriolis frequency (27).

2) SI/CI restratifies the BBL, such that the approxi-

mate stratification of the boundary layer goes as

N2
‘S

2
‘/(11 S2

‘) (Allen and Newberger 1998). Thus,

the BBL may retain significant stratification, par-

ticularly in regimes with large interior slope Burger

numbers. This finding should be considered when

interpreting observations, as our results suggest sig-

nificant turbulent dissipation via SI/CI is possible even

in stratified regions that would not necessarily be

easily identifiable as a boundary layer in terms of

the buoyancy profile alone. For example in observa-

tions of SI/CI unstable conditions in the deep Orkney

Passage (Naveira Garabato et al. 2019) interior slope

Burger numbers of S‘ ’ 1.4 suggest that SI/CImay be

active in regions where the stratification is as large as

2/3 of the interior values.

3) Downslope Ekman transport always tends to generate

conditions unstable to SI/CI through the destruction of

boundary layer PV. However, it is also necessary to

consider the ratio of the slopeMonin–Obukhov length,

Ls (34), to the boundary layer depth when evaluating

whether SI/CI will be present—specifically when Ls/H

is large the boundary layer remains unstratified and

SI/CI is absent. We note, however, that in the case that

Ls/H is large because S‘ is small, baroclinic instabilities

are likely to emerge rapidly (though not present in the

2D simulations used here; Brink and Cherian 2013;

Wenegrat et al. 2018).

4) The primary energy source for SI/CI in the BBL is

the slope geostrophic shear production, GSPs (39),

whereby slope-normal eddy fluxes extract energy

from the background geostrophic shear. The energy

source for the BBL instabilities can therefore involve

mixed SI/CI modes with energy extracted from the

geostrophic flow through both lateral and vertical

JUNE 2020 WENEGRAT AND THOMAS 1809

D
ow

nloaded from
 http://journals.am

etsoc.org/jpo/article-pdf/50/6/1793/4960864/jpod200027.pdf by guest on 22 June 2020



shear production terms (40). The slope Burger number

provides an indicator of whether the instability will be

of the centrifugal (S‘ . 1) or symmetric (S‘ , 1) type,

(41) and (43).

5) The dissipation rate in the boundary layer due to SI/CI

scales with the EBFs, and decreases linearly through

the boundary layer height (48), hence the integrated

SI/CI dissipation goes as (H/2)EBFs. In the surface

boundary layer similar results (e.g., Thomas andTaylor

2010) have been used as the basis for parameterization

for models that do not directly resolve SI (Bachman

et al. 2017), and our results suggest a similar parame-

terization is possible for the BBL.

6) SI/CI extends the Ekman arrest time by a factor of

(11 S2
‘), and increases the arrested Ekman height

by the same factor, but does not stop the buoyancy

arrest process. The total loss of energy from the

balanced flow through bottom drag and SI/CI during

Ekman arrest can be conceptualized as an effective

dissipation (53), which shows that energy extraction

from the geostrophic shear by SI/CI offsets exactly

half of the reduction in bottom drag due to the devel-

opment of thermal wind shear in the boundary layer.

SI/CI also increases the time-integrated dissipation by

slowing the Ekman arrest process, that is, slowing the

decay of the bottom stress.

Beyond instabilities of the BBL itself, a variety of

recent work has also noted that the formation of topo-

graphic wakes, characterized by the shedding of BBL

fluid with fq , 0, appears to be a common feature in re-

alistic submesoscale-resolving simulations (Molemaker

et al. 2015; Dewar et al. 2015; Gula et al. 2016; Srinivasan

et al. 2019). These topographic wakes appear to be par-

ticularly susceptible to CI, which generate dissipation

rates thatmay be sufficiently large to affect the energetics

of regional or even global ocean circulation (Gula et al.

2016). The development of thesewake instabilities will be

sensitive to the upstream BBL evolution, and hence they

may also be influenced by SI/CI in the BBL. For instance,

when BBL instabilities are able to bring the boundary

layer to the state of q ’ 0 before boundary layer separa-

tion, the subsequent topographic wake can be stabilized to

further instabilities. A manuscript detailing how the in-

stabilities and energetics of topographic wakes depends on

the upstream BBL evolution is currently in preparation.

One additional aspect of how BBL instabilities can

modulate flow–topography interaction—which was not

a specific focus of thework presented here—is by affecting

the irreversible mixing of buoyancy along topography.

This topic has broad implications for the large-scale

ocean circulation, and, for example, recent observa-

tional and numerical modeling work has suggested that

submesoscale instabilities along topography may play an

important role in the deep-overturning circulation (Ruan

et al. 2017; Wenegrat et al. 2018; Callies 2018; Naveira

Garabato et al. 2019). The distinction between SI and

CI modes, which we argued above was somewhat ar-

tificial in regards to the kinetic energy budget, may be

of more significance when considering the mixing of

buoyancy. Specifically, simulations of interior CI suggest

very high mixing efficiencies (Jiao and Dewar 2015), in

contrast to the SI modes which are aligned primarily

along isopycnals and hence tend to have very lowmixing

efficiencies. Further investigation of SI/CI in the BBL

and topographic wakes will help clarify the role of sub-

mesoscale instabilities in water mass transformation

along topography.
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APPENDIX

Approximate Momentum Balances

In this appendix we derive the approximate cross-

slope transport equation (21). This follows closely from

Brink and Lentz (2010), however, we integrate over a

finite depth, and retain entrainment fluxes of buoyancy.

First, taking the time derivative of (7), and combining

with (8), gives a single expression that combines the

horizontal momentum equations,

›2hui
›t2

1 f 2hui5 f
›Fy

›z
1

›2Fx

›z ›t
1
›hbi
›t

u , (A1)

where Fx 5 2hu0w0i 1 n›hui/›z is the combined turbu-

lent and diffusive slope-normal flux of across-slope

momentum, and Fy is defined similarly for the along-

slope momentum.

Variables in this equation can be scaled as u;U, t;T,

z ; H, Fy ; ty/ro, F
x ; tx/ro, and b;TUN2

‘u. This

scaling for the buoyancy is a consequence of the as-

sumption that in the regimes of interest here the

across-slope advection of buoyancy is leading order in

the mean buoyancy equation (10). Using these scal-

ings, the ratio of the first term on the left hand side to

the Coriolis acceleration is
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U

T2f 2U
;O(T2f 2)

21
. (A2)

The ratio of the second term on the right-hand side to

the first term on the right-hand side is

txH

HTf ty
#O(Tf )21 , (A3)

where we have assumed that tx # ty as the interior ve-

locity is aligned in the y direction. Thus, both the first

term on the left-hand side, and the second-term on the

right hand side can be neglected when considering

subinertial motions where Tf � 1. In contrast, the last

term on the right-hand side, involving the perturbation

buoyancy, scales relative to the Coriolis acceleration as

TUN2
‘u

2

Tf 2U
; S2

‘ , (A4)

which is not necessarily small (Table 1). We thus neglect

time dependence of the across-slope momentum and

stress, while retaining the influence of buoyancy on the

across-slopemomentum equation, as in Brink and Lentz

(2010), such that

f 2hui ’ f
›Fy

›z
1

›hbi
›t

u . (A5)

Now, integrate over a layer of thickness z0, using
the mean buoyancy equation (10) to replace the rate of

change of buoyancy,

f 2(11 S2
‘)

ðz0
0

hui dz ’ fFyj
z5z0 2 f

htyi
r
o

2 uhw0b0i
z5z0

1 uk
›hbi
›z

����
z5z0

1 ukN2
‘ . (A6)

The final two terms in this equation involve diffusive

buoyancy fluxes, and both can be scaled relative to the

bottom stress as

kN2
‘uro
f ty

5
kr

o
f

uty
S2
‘ ,

kr
o
f

uty
(11 S2

‘) , (A7)

that is, the ratio of the Thorpe transport (Thorpe 1987)

k/u to the Ekman transport, ty/rof (11 S2
‘). This ratio is

generally very small, hence we neglect the diffusive

flux of buoyancy throughout, however, if desired it is

straightforward to incorporate viscous/diffusive fluxes

into the theory developed here. We also note that this

assumption is sometimes violated in the late time evolu-

tion of simulations with large S‘, which undergo signifi-

cant Ekman arrest (section 5). Hence for the purposes of

comparison between the numerical simulations and theory

in section 3c we exclude instances where EBFs/kN
2
‘ , 3

for consistency with (A7), although our results are not

sensitive to the particular cutoff value used. Similar

arguments also allow for ignoring the diffusive flux of

momentum at z0. In contrast the resolved turbulent

buoyancy and momentum fluxes scale with the EBFs

and bottom stress, and are therefore not necessarily

small, depending on where in the boundary layer z0 is
taken to be.

Thus, an approximate form for the depth integrated

cross-slope transport equation is

f 2(11 S2
‘)

ðz0
0

u dz ’ 2f hy0w0i
z5z0 2 f

htyi
r
o

2 uhw0b0i
z5z0 .

(A8)

Finally, we further note that by dividing (A5) by f, and

subtracting the result from (8) it can be seen that the above

scaling arguments also imply ›hyi/›t ’ 2f21u›hbi/›t.
An alternate derivation of this relationship involves

directly scaling the across-slope momentum equation,

which indicates that at subinertial time scales the flow

is in approximate geostrophic balance outside the

near-boundary Ekman layer, that is,2fhyi ’ hbiu (see,
e.g., Fig. 8), which can then be differentiated in time.

Thus, in the BBL setup considered here—where the

mean geostrophic velocity evolves in time—the rate of

change of along-slope velocity in the PV flux equation (18)

is not necessarily negligible, unlike in the frontal-zone

configuration considered in TF10, where the mean

geostrophic velocity did not evolve in time.
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