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ABSTRACT

Ocean currents in the surface boundary layer are sensitive to a variety of parameters not included in classic
Ekman theory, including the vertical structure of eddy viscosity, finite boundary layer depth, baroclinic
pressure gradients, and surface waves. These parameters can modify the horizontal and vertical flow in the
near-surface ocean, making them of first-order significance to a wide range of phenomena of broad practical
and scientific import. In this work, an approximate Green’s function solution is found for a model of the
frictional ocean surface boundary layer, termed the generalized Ekman (or turbulent thermal wind) balance.
The solution admits consideration of general, more physically realistic forms of parameters than previously
possible, offering improved physical insight into the underlying dynamics. Closed form solutions are given for
the wind-driven flow in the presence of Coriolis–Stokes shear, a result of the surface wave field, and thermal
wind shear, arising from a baroclinic pressure gradient, revealing the common underlying physical mecha-
nisms throughwhich theymodify currents in the ocean boundary layer. These dynamics are further illustrated
by a case study of an idealized two-dimensional front. The solutions, and estimates of the global distribution of
the relative influence of surface waves and baroclinic pressure gradients on near-surface ocean currents,
emphasize the broad importance of considering ocean sources of shear and physically realistic parameters in
the Ekman problem.

1. Introduction

Diagnosing velocities in the ocean boundary layer is
key to many issues of broad practical and scientific im-
portance, from larval dispersion, to search and rescue, to
the general ocean circulation. Today, much of our un-
derstanding of boundary layer currents remains rooted
in classic Ekman theory, which holds that, with some
knowledge of the turbulent eddy viscosity, the ageo-
strophic ocean response is completely determined by the
surface wind stress (Ekman 1905). However, despite the
tremendous explanatory power of Ekman theory, basic

observational confirmation of the structure of flow in the
boundary layer has been challenging.
In response to discrepancies between the theory and

observations, a large literature has developed, focused
on modifications to the classic Ekman theory. Broadly
speaking, the proposed modifications to Ekman theory
can be divided into local one-dimensional mechanisms,
such as time variability (Price et al. 1986; Schudlich and
Price 1998; Price and Sundermeyer 1999; McWilliams
et al. 2009), vertical structure in eddy viscosity (Madsen
1977; Miles 1994; Grisogono 1995), or finite boundary
layer depth (Welander 1957; Stommel 1960; Lewis and
Belcher 2004; Elipot and Gille 2009), and mechanisms
that involve nonlocal effects such as horizontal buoy-
ancy gradients (McPhaden 1981; Cronin and Kessler
2009), surface waves (Huang 1979; Jenkins 1986; Xu and
Bowen 1994; Lewis and Belcher 2004; Polton et al.
2005), and nonlinearity (Stern 1965; Niiler 1969; Thomas
and Rhines 2002). Many of these proposed modifica-
tions have closed the gap between theory and observa-
tions; however, generally analytic solutions are only
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available for specific forms of parameters, limiting the
possibility for intercomparison of the various proposed
mechanisms and, critically, their application to realistic
ocean fields.
Here we utilize a simplemodel of the viscous boundary

layer, termed the generalized Ekman model (Cronin and
Kessler 2009), or the turbulent thermal wind balance
(Gula et al. 2014). This model contains many of the
modifications to basic Ekman theory that have been
proposed individually and has already proven successful
in explaining observed horizontal currents (Cronin and
Kessler 2009), as well as modeled boundary layer vertical
velocities (Gula et al. 2014; McWilliams et al. 2015).
Previously, solutions to this model with physically re-
alistic parameters required numerical methods, with an-
alytic solutions available only for greatly simplified forms
of the parameters (Bonjean and Lagerloef 2002; Cronin
andKessler 2009;McWilliams et al. 2015), limiting insight
into the underlying dynamics.
In this manuscript, we significantly extend these ear-

lier results by providing an approximate solution to the
generalized Ekman (turbulent thermal wind)model that
can accommodate a wide range of physically realistic
parameters, providing a unifying framework for many
of the individually proposed modifications to classic
Ekman theory (section 2). Using this solution, two lim-
iting cases, corresponding to a surface wave field and a
horizontal buoyancy gradient, are explored to further
illuminate the underlying dynamics (section 3). The
approximate solutions to these limiting cases reveal how
these two ocean dynamic processes modify the Ekman
solution in similar ways, drawing a previously unnoted
connection between these processes and their accom-
panying literatures.
In section 4 the solution is applied to an idealized front,

illustrating how thermal wind shear in the presence of
viscosity can alter both the Ekman layer flow as well as
drive overturning circulations in the boundary layer
(Garrett and Loder 1981; Thompson 2000; McWilliams
et al. 2015). Estimates of the global distribution of wave
and baroclinic pressure gradient effects on frictional
boundary layer flow (section 5) and scaling analysis suggest
that these ocean dynamical processes can be expected to
be of first-order importance in determining near-surface
currents for much of the world’s oceans.

2. Theory

We consider steady, Boussinesq flow in hydrostatic
balance, where the complex horizontal velocity is
denoted by u[ u1 iy, and =[ ›/›x1 i›/›y. Horizontal
mixing is ignored, and vertical mixing is parameterized
by a turbulent eddy viscosity Ay, which is considered to

be a specified parameter, allowed to vary vertically
subject to moderate constraints imposed by the ap-
proximation technique utilized, as discussed below. The
horizontal and vertical momentum equations are thus
given by
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where r is the density, the Rossby number « 5 U/fL is
assumed small, and therefore the nonlinear advection
terms are excluded. Equation (2) expresses the hydro-
static balance, where b 5 2gr/r0 is the buoyancy, also
considered to be a known quantity, allowed to vary in
the horizontal and vertical.
Equation (1), a balance between the Coriolis accel-

eration, the pressure gradient force, and the turbulent
diffusive flux convergence, provides the basic starting
point for Ekman theory. Deriving Ekman’s (1905) result
begins with a decomposition of the total velocity into a
geostrophic velocity in balance with the pressure gra-
dient force [ug 5 i(r0f)

21=P] and solving for the ageo-
strophic velocity (ua 5 u 2 ug) in a boundary layer with
characteristic thickness hEk 5

ffiffiffiffiffiffiffiffiffiffiffiffi
2Ay/f

p
, the Ekman

depth, where it is assumed that Ay is vertically uniform
and =b 5 0 (see, e.g., Gill 1982, section 9.6). Equation
(1) is a second-order linear ordinary differential equa-
tion for velocity and so requires two boundary condi-
tions on u, given for the classic Ekman problem by
rAy›ua/›z 5 tw at the surface, where tw is the surface
wind stress and ua / 0 as z / 2‘.
Here we take a more general approach that does not

require separating into geostrophic and ageostrophic
components by first vertically differentiating Eq. (1) and
multiplying by r0Ay(z) to form an equation for the stress
t 5 r0Ay(z)›u/›z, which we refer to as the generalized
Ekman model (following Cronin and Kessler 2009):

A
y
(z)

›2t

›z2
2 ift5 r0Ay
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t(0)5 t
w
, and (4)

t(2h)5 0. (5)

The relationship of this model to various alternate
Ekman layer formulations is discussed in detail by
Cronin and Kessler (2009); however, we further note
that this is the samemodel termed the turbulent thermal
wind balance byGula et al. (2014) andMcWilliams et al.
(2015) in their investigations of submesoscale cold fila-
ment dynamics.
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The surface boundary condition Eq. (4) is unchanged
from the classic Ekman problem; however, the bottom
boundary condition Eq. (5) is posed as a no-stress con-
dition, applied at a finite depth z 5 2h, rather than the
no-slip condition utilized in the classic Ekman problem.
This formulation of the problem maintains the classic
Ekman transport, even in the presence of geostrophic
shear at the base of the layer (Cronin and Kessler 2009),
and is applicable at low latitudes or in depth-limited seas
(Stommel 1960; Bonjean and Lagerloef 2002). The so-
lution technique utilized below is a global method, as
opposed to a local boundary layer expansion, and thus
sufficiently far from the boundary layer the solution will
approach the inviscid limit. This gives a measure of
flexibility in the choice of an appropriate h; however, on
the basis of physical arguments, developed further be-
low, h should be chosen to be deeper than significant
sources of geostrophic stress (defined in section 3b), so
as to avoid the creation of a spurious interior Ekman
layer. When h ! hEk, as is the case for most of the ex-
tratropics, the near-surface solution is insensitive to the
particular bottom boundary condition, and we further
note that for the solutions given below, letting h / ‘
results in simplified forms of the solutions that are
equivalent to applying the bottom boundary condition
t / 0 as z / 2‘. However, if a no-slip boundary
condition is desired, the derivation follows directly from
that given in appendix A.
To solve this linear inhomogeneous ordinary dif-

ferential equation with nonconstant coefficients, we
first approximate a solution to the homogenous
formulation of Eq. (3) using the Wentzel–Kramer–
Brillouin (WKB) method (Bender and Orszag 1978;
Grisogono 1995) and then solve for the inhomogeneous
solution using variation of parameters (Hidaka 1955;
Berger and Grisogono 1998). A detailed derivation of
the full solution is presented in appendix A; however,
briefly, the WKB method assumes the solution can be
represented as

t } e(S01S1d1S2d
21...)(1/d) . (6)

Here, we use the physical optics approximation
and solve to first order (S1). The distinguished limit for
the small parameter d is found to be d ;Ek1/2, where
Ek 5 Ay/fH

2, the Ekman number. The classic non-
dimensionalization of Eq. (1), for uniform Ay, iden-
tifiesH as the depth scale of the interior flow, which for
values typical of a stratified midlatitude ocean (Ay ;
1022m2 s21, f ; 1024 s21, H ; 100m) gives Ek ;
O(1022). However, retaining vertical structure in Ay

introduces an additional vertical length scale hAy into

the problem. We thus have six physically relevant
terms (Ay, f, ug, ua, H, hAy ), with two physical di-
mensions (time and length). Application of the
Buckingham Pi theorem (Buckingham 1914) then gives
four nondimensional parameters, two of which take the
form of an Ekman number, p1 5 Ay0/fH

2 and p2 5
Ay0/fh2

Ay
. The latter of these is likely to be a stricter

constraint on the validity of the WKB expansion when
applied to realistic forms of Ay (appendix B).
Formally, the use of theWKB approximation requires

that the properties of the medium vary more slowly than
the solution (Bender and Orszag 1978), a condition that
may be violated in some geophysical flows. Further
analysis of this requirement is given in appendix A;
however, as discussed in appendix B, we find good
agreement between numerical and approximate solu-
tions for a range ofAy profiles and values of Ek (see also
Grisogono 1995), although we emphasize that care must
be taken to assess the accuracy of the solution when
applied to any specificAy profile. For simplicity, we also
require that Ay . 0 throughout the layer, so as to avoid
the additional complexity of singularities in the equa-
tion. This constraint, and theWKB condition Eq. (A12),
does not allow the direct application of the solution to
cases whereAy / 0 as z/ 0, a structure that is implied
by the Monin–Obukhov similarity theory and that oc-
curs in commonly utilized parameterizations such as the
K-profile parameterization (KPP; Large et al. 1994). If
necessary, this restriction can be removed by patching
the WKB solution to an inner solution, valid in a thin
layer as Ay / 0, an example of which is given in ap-
pendix B. Despite these limitations, the simplicity and
generality of the WKB method argue its utility, partic-
ularly in comparison to the often strict parameter re-
quirements associated with other analytic solution
techniques.
Once the WKB solution to the homogenous problem

is identified, the inhomogeneous solution can be found
using variation of parameters and stated in terms of a
Green’s function. The full solution (as derived in ap-
pendix A) is thus given by

t(z)5 t
w
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and G(z, s) is the symmetric Green’s function,
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This general solution is a primary result of this
manuscript.
Velocity shear follows directly from the definition of

stress. However, Eq. (3) is a third-order linear ordinary
differential equation in velocity, and hence to go from
shear to velocity requires an additional boundary con-
dition. Here, to determine velocity we use the solution
for stress directly in the momentum equation [Eq. (1)],
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where t is now known through Eq. (7). This approach
ensures that the vertically integrated ageostrophic ve-
locity satisfies the classic Ekman transport relation.

a. Wind-driven component

The wind-driven component of the stress is given by
the first term on the RHS of Eq. (7), which can be
compared to the exact solution for the case where Ay is
vertically constant (Stommel 1960; Bonjean and
Lagerloef 2002):

t(z)5 t
w
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ffiffiffiffiffiffiffiffiffiffiffi
if /A
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The parallels between the WKB approximation Eq.
(7) and the solution of the constant-Ay problemEq. (11)
are apparent, with the leading-order modification ap-
pearing in the argument of the hyperbolic functions u(z)
given by Eq. (8). This term can be understood as
introducing a stretched vertical coordinate system, de-
fined by the integral in Eq. (8) (Lupini et al. 1975).
Accordingly, hEk(z)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ay(z)/f

p
defines a vertically

localized Ekman depth, analogous to the local wave-
number found in WKB solutions to the wave equation
(see, e.g., Gill 1982, section 8.12).
The amplitude of the stress is also modified by vertical

variations in viscosity, which appears as a ratio to the
one-fourth power. For a slowly vertically decaying Ay,
the effect of this term will be apparent only as z / 2h,
where the ratio of Ay(z)/Ay(0) " 1. Figure 1 compares
example vertical profiles of stress and velocity for the
case of Ay decaying exponentially with depth, and for
constant Ay, to illustrate the modification of the vertical
structure arising from retaining a depth-dependent Ay.

This depth-dependent amplitude term allows the stress
amplitude, and hence the ageostrophic velocity, to decay
over a different vertical depth scale than the rotation of
the stress vector, a feature that is commonly noted in
observations but cannot be accommodated in classic
Ekman theory (Price et al. 1986; Wijffels et al. 1994;
Chereskin 1995; Price and Sundermeyer 1999). It is ap-
parent that if Ay is vertically constant in Eq. (7), the
standard solution [Eq. (11)], as originally identified by
Stommel (1960) in an investigation of the dynamics of
the equatorial undercurrent, is immediately recovered.

b. Inhomogeneous forcing

The second term on the RHS of Eq. (7) is a Green’s
function integral, which can accommodate arbitrary
vertical structure in both ocean sources of stress, which
appear as inhomogeneous forcing terms in Eq. (3), as
well as in the profile of Ay(z), subject only to the con-
straints imposed by the WKB method. The Green’s
function kernel takes the form of paired Ekman layers
above and below interior sources of stress (Fig. 2), which
demonstrates how ocean sources of shear in the pres-
ence of viscosity drive an ageostrophic frictional re-
sponse felt throughout the entire boundary layer
(Hidaka 1955; Csanady 1982). Far from the boundaries,
the profile of the Green’s function is symmetric above
and below interior shear; however, approaching the
boundaries of the domain the shape of the Green’s
function becomes increasingly asymmetric, and the in-
tegral contribution serves to satisfy the boundary con-
ditions Eqs. (4) and (5).
The ageostrophic flow associated with several sim-

plified forcings is shown in schematic form in Fig. 3. In
the absence of wind stress, with vertically uniform Ay

and =b, Ekman layers are generated, both at the surface
as well as at the base of the boundary layer, to satisfy the
boundary conditions (Bonjean and Lagerloef 2002). A
more physically realistic case is given in Fig. 3b, where a
vertically decaying buoyancy gradient gives rise to
both a surface Ekman layer, as well as a diffuse interior
ageostrophic flow. The strength of the interior portion
of the flow, for the situation shown in Fig. 3b, scales as
hEk/h relative to the surface ageostrophic flow and is
therefore often assumed small and neglected. However,
we note that this flow is necessary to balance the transport
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in the surface Ekman layer so as to maintain the classic
Ekman transport relation. Further, this flow need not
always be small, as illustrated in section 3a discussing
surface wave effects, and hence should be retained. The
final panel shows the case of a decaying Ay profile, with
constant =b. The resulting ageostrophic velocities are
similar to those in Fig. 3b; however, the associated
buoyancy fluxes will differ between the two cases, em-
phasizing how horizontal fluxes will be a complex func-
tion of the spatial structure of both the background fields
and Ay, discussed further in section 5b.

The total frictional ageostrophic response thus con-
sists of a directly wind-forced component, as well as an
integral over Ekman-like responses to interior shear.
Therefore, in order to understand the oceanic response
to wind forcing, it is also necessary to understand the
ageostrophic frictional response to ocean dynamical
processes (Cronin and Kessler 2009). Recent observa-
tional work has emphasized the importance of removing
estimates of the geostrophic shear in order to isolate the
ageostrophic flow (Chereskin and Roemmich 1991;
Polton et al. 2013; Roach et al. 2015); however, the

FIG. 1. Example profiles of stress and velocity for an exponentially decaying eddy viscosity
Ay 5Ay0ez/hEk for numeric (solid black) and WKB solution given by Eq. (7) (dashed blue),
and for constant eddy viscosityAy 5Ay0 (thin dashed black). (top) Stress profiles, normalized
by the surface wind stress value t̂5 t(z)/jtwj. (bottom) Velocity profiles, normalized by
û5u(z)jtw/[rfhEk(0)]j21. The WKB solution overlaps the numerical solution to within the
thickness of the plotted line.
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analysis developed here suggests that to fully isolate the
wind-driven component of this flow it is also necessary to
account for ageostrophic flow driven by the geostrophic
shear (section 3b). Further, although we have so far
limited the discussion to shear that arises from baro-
clinic pressure gradients, we note that any other forcing
terms in the momentum equations will act in a similar
manner, and the case of Stokes shear from surface waves
is discussed in section 3a. To further illustrate the un-
derlying dynamical mechanisms, we now consider two
limiting cases representing important sources of shear in
the ocean surface boundary layer that admit further
simplification of the full solution.

3. Limiting cases

a. Stokes shear: hs " hEk

Surface waves modify the oceanic boundary layer in a
variety of important ways (Xu and Bowen 1994;
McWilliams et al. 1997; McWilliams and Restrepo 1999;
Sullivan and McWilliams 2010; Belcher et al. 2012;
McWilliams et al. 2012). Herewe focus on one particular
aspect, termed the Coriolis–Stokes (CS) force, which
appears as an additional term in the Eulerian momen-
tum equation that arises from rotation acting on the
Stokes drift, leading to a tilting of wave orbitals in the
along-crest direction (Polton et al. 2005). The Coriolis–
Stokes force has been shown to significantly modify flow
in both the very near-surface layer, as well as throughout
the entire Ekman layer (Huang 1979; Jenkins 1986;
Lewis and Belcher 2004; Polton et al. 2005; Aiki and
Greatbatch 2012; McWilliams et al. 2014).
Equation (1) can be rewritten to include the Coriolis–

Stokes force as
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with us as the Stokes velocity, given by us(z) 5Ð
k2skx(k)e

2jkjz dk, and where s is the wave frequency,
k is the wavenumber vector, and x(k) is the directional
wave spectrum (Huang 1971). We make the common
simplifying assumption that us can be treated as a
monochromatic wave such that us 5U0ez/hs ŝ(t), where
hs 5 (2jkj)21 and ŝ(t) is a unit vector in the direction of
the waves, which is not necessarily aligned with the local
surface wind stress. The wavenumber k and amplitude
U0 are assumed to be known or parameterized. It is
important to note that for a time-varying wave field, the
Coriolis–Stokes force initially accelerates an ‘‘anti-
Stokes’’ flow (McWilliams and Fox-Kemper 2013), with
transients that decay as 1/ft (Lewis and Belcher 2004). In

the steady-state problem, including the Coriolis–Stokes
force results in an additional forcing term on the RHS of
Eq. (3), perpendicular to the wave direction, given by
ifrAy›us/›z. This appears in the full solution Eq. (7)
within the Green’s function integral, replacing the
bracketed term with [r=b1 ifr›us/›z]. Hence, both
horizontal buoyancy gradients and Stokes shear modify
the standard Ekman solution in mathematically
identical ways.
To provide an asymptotic approximation to Eq. (7), we

can take advantage of the scale separation between the
typical depth scale of the surface waves hs, which is on the
order of several meters, and hEk, which is on the order of
tens of meters, such that hs " hEk. For simplicity in de-
riving the given form of Eq. (13), it is also assumed that
tCS(2h); 0 and hAy ! hEk, where hAy is the depth scale
over which Ay varies; however, neither of these assump-
tions are critical. After repeated integration by parts of
Eq. (7), an asymptotic approximation is given by

FIG. 2. Green’s function [Eq. (9)] for a point source located at z0 in
a boundary layer of depth h 5 6hEk.
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FIG. 3. Schematics of the ageostrophic flow induced by a horizontal buoy-
ancy gradient, with thin lines indicating density contours. (a)Uniformviscosity
and buoyancy gradient leads to a downgradient ageostrophic flow in the near-
surface Ekman layer and upgradient flow in a bottom Ekman layer. (b) Uni-
form viscosity and linearly decaying buoyancy gradient leads to a down-
gradient ageostrophic flow in the Ekman layer and a uniformweak upgradient
flow throughout the remainder of the layer. (c) Linearly decaying viscosity and
uniform buoyancy gradient leads to a similar pattern of flow as in the middle
panel. Figure is based on Thomas and Ferrari (2008, their Fig. 1).
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The surface wave field therefore introduces a Coriolis–
Stokes stress,
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which is rotated (90 1 L)8 to the left of the wave direc-
tion (Northern Hemisphere) where L; tan21(2h2

s /h
2
Ek)

(Fig. 4). This stress modifies the ageostrophic frictional
response in two ways. First, the Coriolis–Stokes stress
can balance a portion of the applied surface wind stress,
leading to a total Ekman layer response that can be
considered as forced by an effective stress, given by the
first bracketed term on the RHS of Eq. (13), rather than
by the wind stress alone (Polton et al. 2005; McWilliams
et al. 2014). Second, the Coriolis–Stokes stress directly
affects a layer of depth scale hs through the last term on
theRHSofEq. (13). The vertical divergence of this term,
in Eq. (12), drives near-surface ageostrophic velocities
that tend to rotate the surface flow into the down-wave
direction (Figs. 4b,c). Together these two modifications
introduce a boundary layer transport of2U0hs, canceling
the Lagrangian Stokes transport [see Polton et al. (2005)

for a detailed discussion of the frictional Coriolis–Stokes
transport].
The results of this section confirm the analysis of

Polton et al. (2005) and extend them to an arbitrary
vertical structure of Ay, subject to the aforementioned
constraints (Song and Huang 2011). As discussed by
Polton et al. (2005, their section 2c), Eqs. (13) and (14)
imply that in the limit h2

s /h
2
Ek / 0, the wavemodification

to the Eulerian currents can bemodeled solely through a
modification to the surface boundary condition. The
proceeding analysis confirms this result is fully in-
dependent of the particular form of vertical mixing and
consequently may be of general use in guiding obser-
vational or modeling studies where the Stokes layer is
not directly resolved.

b. Thermal wind shear: hEk " hr, hAy

A similar simplification of Eq. (7) can be found for the
case of a horizontal buoyancy gradient driving a thermal
wind shear in the near-surface layer. We assume that the
Ekman depth is shallow relative to the depth scales over
which the horizontal density gradient and Ay vary, that
is, hEk " hr, hAy . An example of the scales associated
with a mesoscale frontal system can be found from ob-
servations of the Azores front (Rudnick 1996), where,
using parameters from Nagai et al. (2006), hEk ; 15m;
hAy ; 40m, based on the depth of the transition layer
below the mixed layer; and hr ; 100m, based on the
depth of the thermocline and the observed geostrophic

FIG. 4. Stress and ageostrophic velocity for a zonal surface wind stress tw 5 0.1Nm22 in the presence of
a downwind wave field with Stokes velocity amplitude U0 5 0.22m s21 and depth scale hs 5 3.4m (Komen et al.
1996). (a) Hodograph of total stress (black), wind-forced component (blue), component forced by the effective
surface stress arising from the Coriolis–Stokes stress (solid red), and the Coriolis–Stokes stress (dashed red).
(b) Zonal ageostrophic velocity profile with components as in (a); (c) as in (b) but formeridional velocity. In (b) and
(c) the Ekman depth (solid black) and hs (dashed black) are indicated.
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frontal velocity. This limiting case is marginally valid for
these parameter values and thus can be considered as
requiring a fairly idealized frontal configuration (cf.
Thomas and Lee 2005), included largely for the insight it
offers into the basic dynamics of Eq. (7) and for com-
parison with Eq. (13).
For simplicity it is also assumed that Ay=b / 0 at

z52h. If this assumption is notmade, the solution requires
an additional bottom Ekman layer at z 5 2h in order to
satisfy the bottom boundary condition Eq. (5), as shown

schematically in Fig. 3a. Repeated integration by parts of
Eq. (7) leads to an asymptotic approximation given by
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defines the geostrophic stress, with primes denoting
vertical differentiation.
Closely paralleling the solution for the Coriolis–

Stokes stress, Eq. (13), the modification of the surface
boundary layer stress by horizontal buoyancy gradients
also consists of two components. The first is a modifi-
cation to the Ekman layer, whereby the Ekman re-
sponse is forced only by that portion of the wind stress
that is out of balance with the geostrophic stress, which
again can be considered as defining an effective surface
stress, given by the first bracketed term on the RHS of
Eq. (15) (Thompson 2000; Nagai et al. 2006; Cronin and
Kessler 2009). Thus, even in the case of tw 5 0, thermal
wind shear will drive an ageostrophic flow within the
Ekman layer, with implications for frontal spin-down
(Garrett and Loder 1981; Csanady 1982; Thompson
2000; Thomas and Rhines 2002), filament frontogenesis
(Gula et al. 2014; McWilliams et al. 2015), and near-
surface fluxes (Thomas and Ferrari 2008), discussed in
section 5b. It is worth noting that advection of the
horizontal buoyancy gradient by the ageostrophic fric-
tional flow can modify the buoyancy gradient and
thereby feed back into the Ekman solution, which is
discussed in further detail in Thompson (2000) and
McWilliams et al. (2015).
The second term on the RHS of Eq. (15) represents

the turbulent stress that arises directly from a thermal
wind shear in the presence of a viscosity, often termed
the geostrophic stress, given by Eq. (16). The divergence
of this term drives a weak flow throughout the entire
layer with velocities that scale as hEk/h relative to the
ageostrophic velocity in the Ekman layer, but with a
vertically integrated transport that exactly cancels the
transport in the Ekman layer driven by the surface
geostrophic stress. The definition of geostrophic stress
given here, Eq. (16), differs from that given by previous
investigators, who, considering only vertically uniform

Ay and =b, suggest tgeo(z)5 rAy(›ug/›z). Including
vertical structure in these parameters gives rise to four
additional terms in the definition of geostrophic stress,
bracketed in Eq. (16), which enter the asymptotic ap-
proximation at order h2

Ek/h
2
r,Ay

.
These additional terms are imaginary and thus have the

effect of rotating the geostrophic stress vector slightly from
the geostrophic shear vector. This is illustrated in Fig. 5,
where the geostrophic stress vector is rotated by an angle
l, which scales as l; tan21(2h2

Ek/h
2
r,Ay

), or equivalently,
l ; tan21(22Ek) (Fig. 6). Transport in the Ekman layer
TEk is opposed by geostrophic-stress-driven transport over
the full boundary layer depthTBL. Surface velocity is given
by usurf 5 uEk(0) 1 uBL(0), a combination of the Ekman
ageostrophic velocity forced by the effective surface stress
(uEk) and an interior ageostrophic velocity forced by the
divergence of the geostrophic stress (uBL). The direction of
the near-surface frictional flow relative to the buoyancy
gradient is consequently a function of both the angle of the
geostrophic stress, determined by vertical structure in Ay

and=b, as well as the ratio uBL/uEk; hEk/h. As a corollary
to this, a latitudinal dependence in l appears implicitly
through the Ekman depth, as h2

Ek/h
2
r,Ay

/ ‘ as f/ 0, with
the geostrophic stress vector becoming increasingly par-
allel to the buoyancy gradient at low latitudes.

4. Frictional secondary circulation

The cross-front circulation that arises from frictional
effects, shown schematically in Fig. 3, acts to spin down
ocean fronts and sharpen cold filaments because of
buoyancy fluxes associated with the ageostrophic ve-
locities necessary to match the surface boundary con-
dition Eq. (4) in the presence of a geostrophic shear
(Garrett and Loder 1981; Thompson 2000; McWilliams
et al. 2015). Further, in the case that =2b 6¼ 0, conver-
gences (divergences) of this cross-front ageostrophic
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circulation will drive negative (positive) vertical veloc-
ities in the boundary layer (Garrett and Loder 1981;
Thompson 2000). These effects have been examined
primarily in the context of submesoscale dynamics,
where the Rossby number « is not small, and hence are
generally diagnosed within the context of nonlinear
models (e.g., Nagai et al. 2006). However, recent com-
parisons with modeled submesoscale eddies and fila-
ments have suggested that vertical velocities in the
boundary layer can be accurately diagnosed using this
simple linear theory even at high « (Ponte et al. 2013;
Gula et al. 2014; McWilliams et al. 2015). At larger
spatial scales, similar effects are also suggested in an
ocean global climate model (Cronin and Tozuka 2015).
Therefore, friction acting on the baroclinic component
of the flow may be important to boundary layer dy-
namics across a range of spatial scales.
Vertical velocity for the generalized Ekman model is

given by the standard relationship

w(x, y, z)52k̂ $ =3
t(x, y, z)

rf
1L(x, y) , (17)

where L(x, y) is a constant of vertical integration chosen
to fulfill a rigid-lid boundary condition. To illustrate how
the various components of the full solution enter the
calculated vertical velocity, we can utilize the simplified
definition of stress given by Eqs. (13) and (15) in
Eq. (17), which for a two-dimensional configuration,
invariant in the y direction, reduces to
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rf
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1L(x) .

(18)

The first term on the RHS represents upwelling occur-
ring within the Ekman layer, which is now forced by an
effective stress, tEff 5 tw 2 tCS(0)2 tgeo(0). The second
term on the RHS gives the boundary layer vertical velocity
arising solely from the gradient of the interior forcing,
tInt 5 tCS 1 tgeo. When Eq. (18) is evaluated at the base of
the layer, z52h, it reduces to the classicEkmanupwelling
driven solely by the curl of the wind stress; however, within
the layer, both horizontal gradients in the forcing and
horizontal gradients of the vertical structure can drive
vertical velocities. For the Ekman layer, this can be envi-
sioned as Ekman transport occurring along contours of
constant hEk, which, for a spatially varying Ay, have a
vertical component.
Below the surface Ekman layer, where tCS(x, z)’ 0,

and in the limit of h2
Ek/h

2
r,Ay

/ 0, Eq. (18) reduces to

the scaling given by Garrett and Loder (1981), w ;
gf22r21›(Ay›r/›x)/›x. Thus, vertical velocity in the
boundary layer interior, outside the Ekman layer, is
driven by gradients in thermal wind shear and Ay, with
order h2

Ek/h
2
r,Ay

modifications due to the gradient of the
bracketed terms in Eq. (16), reflecting the role of the
vertical structure of Ay and =b in setting the direction of
the geostrophic stress vector (section 3b, Fig. 6). Ap-
proaching the surface, vertical velocity decays exponen-
tially over an Ekman layer of depth scale hEk, with
additional near-surface vertical velocities in a thin layer of
depth scale hs driven by the Coriolis–Stokes stress.
To illustrate the secondary circulation that arises

from the balance Eq. (1), we examine an idealized
front in the x–z plane (200-km width, h 5 500m),
based on an approximation of the Frontal Air–Sea
Interaction Experiment (FASINEX) data (Pollard
and Regier 1992), similar to Thompson (2000). We set
tw 5 0 and tCS 5 0, as the solution is linear and these
effects are simply additive. The buoyancy in this
model is given by

b(x, z)5
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FIG. 5. Schematic of the components of the frictional ageo-
strophic response to a horizontal buoyancy gradient, with contours
of constant r shown in gray. The geostrophic stress is rotated by an
angle l from the geostrophic shear, which points along lines of
constant r. The divergence of this geostrophic stress drives an
ageostrophic velocity uBL and transportTBL, rotated 908 to the right
(Northern Hemisphere). Geostrophic stress at the surface drives an
Ekman response, through an effective surface stress 2tgeo, with
associated velocities uEk and transport TEk. The surface velocity is
given by usurf 5 uBL(0) 1 uEk(0). Vectors are not to scale.
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with values of parameters given in Table 1 and the hat
notation indicating nondimensionalized coordinates
ranging from 0 to 1. Values of Ay are based on the
approximation used in McWilliams et al. (2015), de-
signed to be broadly consistent with KPP (Large et al.
1994). This is used simply to illustrate several gen-
eral features of the solution that arise from horizontal
and vertical structure in mixing across a frontal re-
gion, rather than to provide an absolutely accurate
diagnostic, and the qualitative discussion that fol-
lows is not sensitive to the detailed particulars of
our choice of Ay:

A
y
(x, z)5A

y0
G(z)

ĥ(x̂)

h0

1A
yb
, z52

ẑ

ĥ(x)
, (20)

G(z)5
27

4
(11 z20)(z0 1 z)(12 z)2, z# 1, and

(21)

G(z)5 0, z. 1. (22)

The variable G has a maximum value of ~1 in the
boundary layer, z0 is a small parameter introduced to
avoid a singularity at z5 0, and ĥ is the surface boundary
layer depth, taken here as

ĥ(x)5 h0 1 d
h

(
tanh

"
a(x̂2 x
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#
2
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2

)
. (23)

All parameter values for Eqs. (19)–(23) are given in
Table 1. Figure 7 shows the structure of the idealized

TABLE 1. Parameters for Eqs. (19)–(23).

Parameter Value Physical interpretation

bf 20.6g/r0 Buoyancy change across front
bb bf /2 Buoyancy change across thermocline
a 21.185 Horizontal scaling factor
z0 0.75 Vertical position
x0 1 Horizontal position
d0 0.125 Horizontal scale
d1 0.125 Vertical scale
f 6.88 3 1025 s21 Coriolis frequency
Ay0 3 3 1022 m2 s21 Eddy viscosity magnitude
Ayb 1 3 1024 m2 s21 Background viscosity
h0 0.84 Turbulent boundary layer depth
dh 0.05 Across front change in boundary layer depth
z0 5 3 1023 Regularization constant

FIG. 6. Contour plots of l (8, positive solid, negative dashed), the angle of the geostrophic stress relative to the
direction of the geostrophic shear, as defined in the text by Eq. (16), evaluated at z 5 0. (left) Linear Ay [Ay(z) 5
Ay0(1 1 z/hAy )] and linear =b [=b(z) 5 B0(1 1 z/hr)]. (right) Modified Gaussian Ay fAy(z) 5 Ay0[(z/hAy ) 1
0.25] exp[21/2(z/hAy )

2 1 1/2]g, as discussed in appendix B, and exponential =b(z) [=b(z)5B0ez/hr ]. In both
plots positive parameter values indicate fields that decay downward.
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front and the eddy viscosity, along with the associated
along-front geostrophic flow, implying « ; 0.05. We
further assume w 5 0 at z 5 0 (rigid lid) and define an
ageostrophic cross-front streamfunction such that (ua,
w) 5 (cz, 2cx). Using the meridional momentum equa-
tion, Im [Eq. (1)], gives

c5
1

rf
ty(x, z) . (24)

The secondary overturning circulation arising from the
geostrophic stress is found numerically and is shown in
Fig. 7. This is a thermally direct circulation with a coun-
terclockwise sense of rotation that tends to tilt the front
and restratify the near surface (Thompson 2000). Down-
welling velocities on the dense side of the front are
stronger than the upwelling on the buoyant side of the
front, consistent with previous findings (Samelson 1993;
Thompson 2000). Streamlines are closed, indicating zero
vertically integrated horizontal transport, as required to
maintain the classic Ekman transport. This is a general
result that does not depend on the frontal configuration.
Note, however, that although the vertically integrated
horizontal transport is zero, the associated fluxes need not

be zero, as discussed further in section 5b. Furthermore,
the vertical buoyancy flux associated with the secondary
overturning circulation can be nonzero (McWilliams et al.
2015) and hencemay play a role in the general circulation
through vorticity stretching of the interior.
To illustrate the importance of spatial variability in

Ay, we decompose the total vertical velocity field
(Fig. 8a)wtotal into vertical velocities due to the gradient
in the forcing (=2b), which we designate wforcing, and the
remainder that is a function only of the spatial structure
inAy, which we designatewAy , as discussed in relation to
Eq. (18). For the particular frontal configuration ex-
amined here, wAy is ;25% of wtotal. However, locally
near the base of the turbulent boundary layer (Fig. 8,
dashed line) wAy can be the dominant term and hence
may be of particular importance for vertical fluxes into
the near-surface layer. For a geostrophic stress, the ratio
of vertical velocities is given by

w
Av

w
forcing

;
Lforcing

L
Av

, (25)

where L indicates the relevant horizontal length
scales. Observations suggest that horizontal length

FIG. 7. Across-front sections of the idealized two-dimensional front discussed in section 4, with contours of
constant r indicated in solid black. (top left) Along-front geostrophic velocity, (top right) Ay, and (bottom) fric-
tional ageostrophic overturning streamfunction [m2 s21; Eq. (24)], with contours of constant Ay in gray.
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scales over which vertical mixing varies are compara-
ble to frontal features (Dewey and Moum 1990; Nagai
et al. 2006), and thus these effects may be first order in
determining the vertical velocity in the boundary
layer. A similar scaling holds within the Ekman layer,
where for a surface wind stress aligned orthogonal to
a horizontal gradient in Ay, the ratio of vertical ve-
locities at z 5 2hEk is

w
Av

wforcing

;
Lforcing

4L
Av

. (26)

5. Discussion and further implications

The solutions presented here build upon prior work by
allowing vertical variation in Ay, as well as realistic struc-
ture in ocean fields, such as =b and the Coriolis–Stokes
force. Examination of the solutions [Eqs. (7), (13), and
(15)], suggestsmanyways inwhich includingmore physical
realism in the problem parameters can modify the ex-
pected ageostrophic flow; however, to furthermotivate the
importance of this added complexity, we first consider
scaling arguments relating the importance of geo-
strophic stress and Coriolis–Stokes stress to wind
stress. The global distribution of these fields is then

estimated using a combination of model output and
reanalysis data. Finally, we comment briefly on the
importance of these modifications to determining
horizontal fluxes in the boundary layer.

a. Scaling and geographic distribution

The boundary conditions utilized here ensure that the
classic Ekman transport relation is maintained, even in
the presence of ocean sources of stress. However, as
demonstrated in section 2, ocean sources of stress can
greatly modify the vertical structure of currents and
hence are fundamental to understanding boundary layer
dynamics. Determining the magnitude of both the geo-
strophic stress and the Coriolis–Stokes stress depends
critically on the value of Ay, which complicates their
determination from observations. However, at low fre-
quencies, variability in near-surface Ay may be con-
trolled by variability in the surface wind stress
(Wenegrat et al. 2014). Taking hEk ;u*/f (Caldwell
et al. 1972), where u*5

ffiffiffiffiffiffiffiffiffi
tw/r

p
, gives Ay ; u2

*/f , and
hence the ratio of the geostrophic stress to the surface
wind stress can be scaled as

gGEO 5
tgeo
t
w

;
=b

f 2
. (27)

FIG. 8. Frictionally driven boundary layer vertical velocity. (top) Total vertical velocity,
(middle) vertical velocity arising from the gradient in the horizontal buoyancy gradient,
and (bottom) vertical velocity due to gradient in Ay. The dashed line indicates the tur-
bulent surface boundary layer depth, defined by Eq. (23). Note reduced color scale in
bottom panel.
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The direct proportionality of gGEO to =b, and inde-
pendence from tw, highlights how the geostrophic stress
can be expected to be a ubiquitous forcing of ageo-
strophic flow at sharp frontal features and consequently
may be fundamental for understanding horizontal heat
flux at buoyancy fronts. The f22 dependence indicates a
rapid increase at low latitudes. Further, utilizing the
stratified Ekman depth scaling hEk ; u*/

ffiffiffiffiffiffi
Nf

p
(Pollard

et al. 1972) in Eq. (27) gives gGEO ; Bu, where Bu 5
NH/fL is the Burger number, defined such that
b;N2H. Determination of Bu is thus dependent on the
geometry of the particular front being considered;

however, for many oceanic flows observations suggest
Bu ; O(1), implying gGEO ; O(1) (Nagai et al. 2006;
Boccaletti et al. 2007).
The Coriolis–Stokes stress can be scaled relative to

the surface wind stress as

gCS 5
tCS
t
w

;U0hs

rf

t
w

;La22 hs

h
Ek

. (28)

Therefore, gCS is proportional to the Stokes transport
divided by the wind-driven Ekman transport (McWilliams
and Restrepo 1999; Polton et al. 2005). Alternatively,

FIG. 9. Global climatology from 2001–11 by seasons, with months indicated in plot titles, for gGEO as defined in the
text by Eq. (27).

FIG. 10. As in Fig. 9, but for gCS as defined in the text by Eq. (28).
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this can be rewritten using the turbulent Langmuir
number La5 (u*/U0)

1/2, which scales the ratio of wind-
forced production of turbulent kinetic energy (TKE) to
the wave-forced production of TKE (McWilliams et al.
1997; Grant and Belcher 2009), with typical values of
0.2–0.5 (Smith 1992; Belcher et al. 2012). This suggests
that gCS ; O(1) for hs/hEk of 0.04–0.25.
To form estimates of the global distributions of gGEO

and gCS, a combination of reanalysis data and model
output is utilized. The total Stokes transport is found
from the WaveWatch III (WWIII) model, reported ev-
ery 6 h on a 0.58 grid (Rascle et al. 2008; Rascle and
Ardhuin 2013). For consistency with the WWIII model
forcing, we utilize NCEP Climate Forecast System Re-
analysis (CFSR)wind stress, temperature, and salinity at
5m and horizontal currents at 5 and 15m depth (Saha
et al. 2006). To estimate the geostrophic stress, we cal-
culate buoyancy gradients from monthly 5-m tempera-
ture and salinity (0.58 resolution) and then infer
approximate monthly values of Ay using the surface
boundary condition Ay 5 tw(r›u/›z)

21, with the near-
surface shear magnitude approximated using CFSR
velocities at 5 and 15m, ›u/›z; ju(25)2 u(215)j/10.
Alternate parameterizations of Ay were tested, in-
cluding wind-stress-only parameterizations (Wenegrat
et al. 2014) and bulk Richardson number closures
(Pollard et al. 1972), and were found to give similar re-
sults (not shown here). Monthly values of the Stokes
transport and tgeo over the period 2001–11 are then used
to form climatologies of gGEO and gCS.
Figures 9 and 10 show the global seasonal climatology

of gGEO and gCS, respectively. The dependence on lat-
itude through the Coriolis frequency is apparent in both
quantities, with gGEO peaking at low latitudes and gCS
dominating at higher latitudes (Fig. 11). Regional vari-
ability is also evident, with gGEO enhanced in boundary
currents, along the equatorward edges of the subtropical
gyres, and through much of the Indian Ocean and
eastern subtropical Pacific. These parameterized results
can be compared to estimates derived from model out-
put and alternate parameterizations of Ay, which in-
dicate similar spatial patterns (Chu 2015; Cronin and
Tozuka 2015).
In the zonal average and temporal average, gCS be-

comes larger than gGEO poleward of 158 (Figs. 10, 11),
following a spatial pattern that in large part reflects the
variability in Stokes transport (McWilliams and
Restrepo 1999). This latitudinal pattern may also reflect
the effect of the coarse-resolution products utilized here
on estimating gGEO, as the first baroclinic Rossby radius
at 158 is;100 km (Chelton et al. 1998), which is close to
the resolved meridional Nyquist wavelength, and hence
=b may be underestimated at higher latitudes. Wide

swaths of the world oceans have gCS; 0.25, emphasizing
how important these effects may be for Ekman-layer
currents. Intensification of gCS in the Southern Ocean is
also evident. In the Northern Hemisphere there is a
general enhancement of gCS in the eastern side of the
ocean basins, with seasonal variability in both extent and
magnitude, resulting from enhanced Stokes transport
associated with increased wintertime wind forcing.
The relative influences of the geostrophic stress and

the Coriolis–Stokes stress can be considered using the
joint probability density function (PDF) of the monthly
estimates of gGEO and gCS, evaluated between 58 and
73.58 from 2001 to 2011 (Fig. 12). Consistent with the
spatial maps, the PDF has a broad peak at gCS ; 0.1–
0.25 with negligible gGEO. However, the distribution of
gGEO is long-tailed, reflecting its spatial and temporal
inhomogeneity, evident in comparing an example
month (Fig. 13) and the climatological maps (Figs. 9, 10).
Considering the total relative change in the effective
surface stress arising from both the geostrophic stress
and the Coriolis–Stokes stress, gT 5 gGEO 1 gCS, 36%

FIG. 11. Zonal and temporal averages of gGEO and gCS.
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of all points have gT . 0.25. Together, the estimates
presented above, while only a rough approximation,
suggest that surface waves will be of O(1) importance
for much of the extratropics, while baroclinic pressure
gradients will dominate at low latitudes, in frontal sys-
tems, and potentially over shorter time scales and
smaller spatial scales than resolved here, specifically at
the submesoscale, where geostrophic stress effects have
been demonstrated to significantly modify the ageo-
strophic flow (Ponte et al. 2013; Gula et al. 2014;
McWilliams et al. 2015).

b. Horizontal fluxes

The proceeding analysis, and theory, highlights how
ocean sources of stress can be expected to modify the
frictional response within the near-surface layer, af-
fecting the magnitude, direction, and vertical profile of
the ageostrophic flow. These modifications to the

ageostrophic velocity can often be approximated using
the concept of an effective stress tEff (section 3), leading
to amodified Ekman velocity scale of uEk; tEff/(rfhEk).
This has wide-ranging implications for horizontal ad-
vective fluxes, where, for example, the geostrophic stress
will always enhance heat flux down the buoyancy gra-
dient relative to the classic Ekman solution, as well as
for other dynamically important quantities such as the
wind work on the total ageostrophic flow tw $ uEk, which
will be reduced for winds alignedwith the surface frontal
jet (down-front winds) and enhanced for winds aligned
against the frontal jet (up-front winds).
A brief example, which highlights the role of vertical

structure in Ay, is given by considering the differential
horizontal buoyancy flux across the surface Ekman
layer, which can change the stratification, and hence the
potential vorticity (PV), of the near-surface layer
(Thomas and Ferrari 2008). A scaling for the frictional

FIG. 12. Global area-weighted joint PDF of gGEO and gCS (top right) estimated monthly from 2001 to 2011. (top
left) The PDF of gGEO and (bottom) the PDF of gCS. Climatological average values are indicated in the top-right
panel for the locations of several previous Ekman layer studies: Long Term Upper Ocean Study (cross symbol;
Price et al. 1987); TranspacificHydrographic Survey (basin averaged, diamond symbol;Wijffels et al. 1994); Eastern
Boundary Current experiment (plus sign; Chereskin 1995); and 28N, 1408W (circle symbol; Cronin and
Kessler 2009).
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flux of the vertical component of PV due to a surface
wind stress aligned orthogonally to a horizontal buoyancy
gradient is given by (Thomas 2005; Thomas and Ferrari
2008)

JFz ;
t
w

rhEk

=b . (29)

However, if Ay is allowed to vary vertically, with depth
scale hAy , this scaling is modified to become

JFz ;
t
w

rhEk

=b

 
11

hEk

4h
Ay

!
. (30)

This relationship is shown in Fig. 14 for a wind stress
aligned with the front and an exponential Ay profile
that decreases (increases) hAy . 0 (hAy , 0) with depth.
As jhAy j approaches hEk, the surface cross-front cur-
rent is enhanced (reduced) for hAy . 0 (hAy , 0),
modifying the frictional PV flux. A similar result can be
easily derived for the influence of the vertical structure of
Ay on the frictional PV flux associated with the frontal
spin-down by the geostrophic stress (Thomas and

Ferrari 2008). Thus, the vertical structure of mixing is
linked to the flux of vertical potential vorticity through
its effect on the differential horizontal advection of
buoyancy.
A conceptual example of how this might affect the

ocean boundary layer is found by considering the near-
surface response to up-front and down-front winds.
Down-front winds advect dense water over light water,
leading to gravitational instability, whereas up-front
winds advect light water over dense, enhancing strat-
ification (Thomas and Lee 2005). Making the ideali-
zation that down-front winds lead to a well-mixed
layer with Ay ; constant, whereas up-front winds
lead to a stratified near-surface layer with Ay de-
creasing with depth, would imply the existence of an
asymmetry in PV fluxes between the two cases. Con-
sequently, for the same wind stress and buoyancy
gradient magnitudes, wind-driven frictional PV fluxes
may be enhanced in up-front wind conditions relative
to down-front winds, providing a possible alternative
route to the creation of positively skewed PV distri-
butions (Thomas 2007).

FIG. 13. Example single month estimate of gGEO and gCS, showing additional spatial detail not
evident in the climatological maps (Figs. 9, 10).
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6. Summary

In this manuscript we present an approximate solution
to the generalized Ekman (Cronin and Kessler 2009), or
turbulent thermal wind (Gula et al. 2014; McWilliams
et al. 2015), balance. While this theory omits many as-
pects of boundary layer physics that are likely to be
active in the real ocean, the simplicity and generality of
the solution provides a useful tool for gaining insight
into the underlying dynamics beyond that available from
numerical methods. The full solution, Eq. (7), given in
terms of an integral over a Green’s function, can be
applied quite generally to a variety of sources of near-
surface shear and further allows for arbitrary vertical
structure inAy, subject to the constraints imposed by the
WKB method. Many existing modified Ekman theories
can thus be considered as particular cases of this solu-
tion, providing a framework for comparing their effects
on ageostrophic ocean currents.
Two important aspects of surface layer dynamics that

are not as readily accommodated in this framework are
time dependence and nonlinearity. Observations suggest
significant diurnal variability of near-surface shear (Price
et al. 1986; Schudlich and Price 1998; Cronin and Kessler
2009; Smyth et al. 2013; Wenegrat and McPhaden 2015),
which has been suggested as an explanation of observed
discrepancies with classic Ekman theory (Price and
Sundermeyer 1999). However, analysis of near-surface
velocity observations appears to suggest that some of the
observed features that have been used to argue for the
role of time variability, such as a flattened spiral, can also
be very well explained by alternate mechanisms that do
not invoke time dependence (Lewis and Belcher 2004;

Polton et al. 2005; Cronin and Kessler 2009). Disen-
tangling these effects using observations is further com-
plicated by measurement challenges, particularly for
moored observations that can be biased by surface waves
(Rascle and Ardhuin 2009). A focus of future work
should be clarifying the relative contributions of, and in-
teractions between, the diverse sources of near-surface
ageostrophic flow.
Nonlinear effects may be of particular importance in

examining sharp horizontal buoyancy gradients (Stern
1965; Niiler 1969; Thomas and Rhines 2002; Mahadevan
andTandon 2006). However, a range ofmodeling efforts
that include more complete physics indicate that the
basic dynamical mechanisms discussed here continue to
be of first-order importance in the boundary layer, even
at high « (Thompson 2000; Nagai et al. 2006; Ponte et al.
2013; Gula et al. 2014; McWilliams et al. 2015). We also
note that the work of Wu and Blumen (1982) and Tan
(2001) can be considered as a blueprint for how the
semigeostrophic momentum approximation could be
incorporated into the solution given here.
Examining two limiting cases, the first for Stokes

shear of shallow depth relative to hEk and the second
for a front much deeper than hEk, reveals the key un-
derlying dynamics. Ocean sources of shear, in the pres-
ence of viscosity, act as sources of stress. These ocean
sources of stress are, as a first approximation, indepen-
dent of the surface wind stress and are capable of driving
their own ageostrophic flow, including creating a surface
Ekman layer. The equivalency of the closed form solu-
tions for the two limiting cases emphasizes how robust
this interpretation of the underlying dynamics is, sug-
gesting the same interpretation holds for themore general
Green’s function solution [Eq. (7)] and highlighting a
previously unnoted connection between the frictional ef-
fects of surface waves and fronts.
The solutions presented here are unique in their

ability to incorporate arbitrary vertical structure in
Ay, which is motivated physically by modeling and
direct turbulence measurements (Zikanov et al. 2003;
Kirincich 2013; Soloviev and Lukas 2014) and is shown
here to lead to modifications of both horizontal and
vertical flows. Improved understanding of the spatial
variability of mixing is key to understanding and
parameterizing these effects on boundary layer flow.
Finally, it should be emphasized that the various dy-
namical processes discussed here should not be consid-
ered as the addition of new parameters to the Ekman
problem, but rather as fundamental components of the
frictional response of the ocean boundary layer, whose
influence may be of the same order of magnitude as the
surface wind stress throughout large portions of the
global oceans. The total frictional ageostrophic response

FIG. 14. Frictional flux of vertical potential vorticity due to the
wind-driven differential horizontal buoyancy advection across the
Ekman layer. Numerical solutions of f[uEk $ =b]z50 are plotted
(solid) as a function of the eddy viscosity depth scale, where
Ay(z)5Ay0ez/hAy . Values are normalized by Eq. (29). Also plotted
is the scaling suggested by Eq. (30) (dashed), which overlaps the
numerical solution for most of the parameter space.
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is a combination of a response to the surface wind, as in
the classic Ekman theory, and a response to ocean
sources of shear.
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APPENDIX A

Derivation

Let Ay(z)5 Ay0c(z), then, after nondimensionalizing
Eq. (3) as discussed in section 2, we have

Ekt00 2
i

c(z)
t5 j(z) , (A1)

t(0)5 t
w
, and (A2)

t(2h)5 0, (A3)

where primes indicate vertical derivatives and all vari-
ables are nondimensional unless otherwise noted. The
RHS of Eq. (A1) is given in terms of a generic in-
homogeneous forcing function j(z), which could arise
from geostrophic shear or Coriolis–Stokes shear as dis-
cussed in section 3. Solving first for the homogenous
solution and making the WKB assumption,

t} e(S01S1d1S2d
21$$$)/d , (A4)

gives

Ek

!
S00
0

d
1

S02
0

d2
1

2S0
0S

0
1

d
1 S00

11 S02
1

"
t2

i

c(z)
t5 0. (A5)

The distinguished limit for the parameter d is there-
fore d ;Ek1/2, and the balance conditions are given by

O(d22): S0
0 56

ffiffiffiffiffiffiffiffiffiffi
i

c(z)

s

, and (A6)

O(d21): S0
1 52

S00
0

2S0
0

. (A7)

Taking the positive root of S0
0 gives

S0 5
ffiffi
i

p ðz

2h

c(Z)21/2 dZ , (A8)

and

S1 5
1

4
logc(z) . (A9)

A similar argument is followed for the negative root,
giving the two solutions to the ODE, which dimension-
ally are given by

t(z)5C
1
A

y
(z)1/4eu(z)

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
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1C
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y
(z)1/4e2u(z)

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
y2

, (A10)

where

u(z)5
ffiffiffiffi
if

p ðz

2h

A
y
(Z)21/2 dZ . (A11)

For the WKB approximation to hold, two conditions
must be satisfied (Bender and Orszag 1978):

Ek1/2S
1

S
0

" 1, Ek1/2 / 0, and (A12)

Ek1/2S2 " 1, Ek1/2 / 0, (A13)

discussed further in appendix B.
Variation of parameters gives the inhomogeneous

portion of the solution,

t
p
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W(y
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1
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where W is the Wronskian,

W(y1, y2)5 y1y
0
2 2 y2y

0
1 522
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p
. (A15)

Thus,
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Changing the limits of integration gives

t
p
5

ðz

0

sinh[u(z)2 u(s)]A
y
(z)1/4A

y
(s)1/4j(s)

ffiffiffiffi
if

p ds . (A17)

So, the total solution, before application of the boundary
conditions, is given by
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Applying the surface BC gives

t
w
5C1Ay

(0)1/4eu(0)1C2Ay
(0)1/4e2u(0); (A19)

therefore,
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The lower BC gives

05 2C
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FollowingHidaka (1955), wemultiply Eq. (A20) by sinh[2u(0)], Eq. (A21) by2[Ay(z)/Ay(2h)]1/4 sinh[u(z)2 u(0)],
and add them, giving
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This can be rewritten as
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APPENDIX B

Accuracy of Approximate Solution

The validity of the physical-optics WKB approxima-
tion requires the criteria Eqs. (A12) and (A13) be sat-
isfied (Bender and Orszag 1978). The relative error in
the approximation will then be a function of the small
parameter d ;Ek1/2 and the first ignored term S2 in

Eq. (A4), which involves both first and second de-
rivatives of Ay. Thus, errors will be a function of the
Ekman number Ek, as well as the particular vertical
structure of Ay. Anecdotally, the WKB solution Eq. (7)
has proven extremely accurate across a wide range of
vertical structures of Ay and values of Ek considered in
developing the model (see also Grisogono 1995; Berger
and Grisogono 1998). However, to better illustrate the
accuracy of the approximate solution, we consider the
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relative error associated with three idealized forms of
Ay (Fig. B1). In each case the normalization is such that
h 5 1, f 5 1, and Ay0 5 Ek 3 1m2 s21.
Case I is a simple exponentially decaying profile,

A
y
(z)5A

y0
eẑ/0:125 , (B1)

chosen for its analytic simplicity and consistency with
observations (Peters et al. 1988; Dillon et al. 1989). Case
II is a linearly decaying profile,

A
y
(z)5A

y0

!
11

ẑ

11m

"
, (B2)

where m is a small value added to avoid a singularity
at z 5 21. Case III is a modified Gaussian profile
(Parmhed et al. 2005),

A
y
(z)5A

y0fẑe
20:5(ẑ/0:25)2 1m , (B3)

where f 5 4e1/2, which approximates the polynomial
profile of O’Brien (1970), and m is a small parameter
added for computational regularity (e.g., McWilliams
and Huckle 2006). The results of the error analysis are
not dependent on the value of m, which we take to be
m5 1026m2 s21. This profile violates Eq. (A12) in a thin
layer near ẑ 5 0, where Ay / m, and hence the WKB
solution must be patched to an inner solution valid in
this thin near-surface region. The depth at which the
patching occurs zp can be determined following
Parmhed et al. (2005) as

z
p
52

1

4

$
W

!
2ffiffiffiffi
f

p
"%2

, (B4)

whereW is the LambertW function (Corless et al. 1996).
For the values used here, zp 5 20.06. For the case of a
surface wind stress, an appropriate inner solution is
determined by assuming a linearized eddy viscosity,
Ayl(ẑ)5fjẑj1m, valid for ẑ/ 0, giving (Madsen 1977)

tInner 5 t
w

ffiffiffiffiffiffiffiffiffiffi
b(z)

p
ffiffiffiffiffiffiffiffiffiffi
b(0)

p
K1[2

ffiffiffiffiffiffiffiffiffiffi
b(z)

p
]

K
1
[2

ffiffiffiffiffiffiffiffiffiffi
b(0)

p
]
, (B5)

where b(z)5 [ifAyl(ẑ)]/f
2 and K1 is the first-order

modified Bessel function of the second kind
(Abramowitz and Stegun 1964). This solution is then
patched to the WKB solution at ẑ5 zp.
Determining the appropriate patched solution for the

inhomogeneous problem is beyond the scope of the
present work. Thus, for assessing the error associated
with geostrophic stress forcing, we make the simplifying
approximation of applying the surface boundary

condition directly to the WKB solution at zp, similar to
the introduction of a roughness length scale (Madsen
1977), and equivalent in the error analysis to the re-
quirement that any inner solution be exact. The validity
of this approximation is supported by the accuracy of the
patched homogeneous solution (Fig. B2), which sug-
gests that an appropriate inner solution for the inho-
mogeneous problem could be identified using variation
of parameters (appendix A).
To form an estimate of the relative error as a function

of Ek,WKB solutions [Eq. (7)] are compared to numeric
solutions, found using a shooting method, and the nor-
malized maximum error identified in each vertical
profile,

ct
err
(Ek)5

maxfjtWKB(z, Ek)2 tnum(z, Ek)jg
maxfjtnum(z, Ek)jg

. (B6)

Results are plotted in Fig. B2 for the patched solution
with wind stress forcing (top) and solutions forced by a
vertically uniform buoyancy gradient (bottom). Also

FIG. B1. Vertical structure ofAy models considered in appendix B.
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plotted for reference is the value of the small parameter
d;Ek1/2. Errors are generally small and, for Ek# 1021,
the only case with relative errors exceeding 5% is the
modified exponential profile, Eq. (B3). The errors as-
sociated with this profile are strongly dependent on the
choice of patching depth zp rather than the overall ver-
tical structure, as can be anticipated through the loga-
rithmic singularity evident in Eq. (A12). Hence, caution
is required in applying Eq. (7) in cases where Ay /
0 near a boundary.
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